Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 227(3): 457-465, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196388

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) is an arbovirus that periodically emerges to cause large epidemics of arthritic disease. Although the robust immunity elicited by live-attenuated virus (LAV) vaccine candidates makes them attractive, CHIKV vaccine development has been hampered by a high threshold for acceptable adverse events. METHODS: We evaluated the vaccine potential of a recently described LAV, skeletal muscle-restricted virus (SKE), that exhibits diminished replication in skeletal muscle due to insertion of target sequences for skeletal muscle-specific miR-206. We also evaluated whether these target sequences could augment safety of an LAV encoding a known attenuating mutation, E2 G82R. Attenuation of viruses containing these mutations was compared with a double mutant, SKE G82R. RESULTS: SKE was attenuated in both immunodeficient and immunocompetent mice and induced a robust neutralizing antibody response, indicating its vaccine potential. However, only SKE G82R elicited diminished swelling in immunocompetent mice at early time points postinoculation, indicating that these mutations synergistically enhance safety of the vaccine candidate. CONCLUSIONS: These data suggest that restriction of LAV replication in skeletal muscle enhances tolerability of reactogenic vaccine candidates and may improve the rational design of CHIKV vaccines.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Animales , Ratones , Virus Chikungunya/genética , Fiebre Chikungunya/prevención & control , Vacunas Virales/genética , Anticuerpos Neutralizantes , Mutación , Vacunas Atenuadas/genética , Anticuerpos Antivirales
2.
J Virol ; 96(4): e0158621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34935436

RESUMEN

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Asunto(s)
Virus Chikungunya/fisiología , Virus Chikungunya/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Aedes/virología , Animales , Anticuerpos Monoclonales/inmunología , Fiebre Chikungunya/patología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Modelos Animales de Enfermedad , Heparina/metabolismo , Humanos , Inflamación , Ratones , Mutación , Pruebas de Neutralización , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus , Replicación Viral
4.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999033

RESUMEN

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection.IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.


Asunto(s)
Virus Chikungunya/fisiología , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Acoplamiento Viral , Animales , Artritis , Línea Celular , Fiebre Chikungunya/virología , Glucuronosiltransferasa/genética , Heparitina Sulfato/metabolismo , Humanos , Polisacáridos/metabolismo , Tropismo Viral
5.
J Clin Invest ; 130(3): 1466-1478, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794434

RESUMEN

Chikungunya virus (CHIKV) is an arbovirus capable of causing a severe and often debilitating rheumatic syndrome in humans. CHIKV replicates in a wide variety of cell types in mammals, which has made attributing pathologic outcomes to replication at specific sites difficult. To assess the contribution of CHIKV replication in skeletal muscle cells to pathogenesis, we engineered a CHIKV strain exhibiting restricted replication in these cells via incorporation of target sequences for skeletal muscle cell-specific miR-206. This virus, which we term SKE, displayed diminished replication in skeletal muscle cells in a mouse model of CHIKV disease. Mice infected with SKE developed less severe disease signs, including diminished swelling in the inoculated foot and less necrosis and inflammation in the interosseous muscles. SKE infection was associated with diminished infiltration of T cells into the interosseous muscle as well as decreased production of Il1b, Il6, Ip10, and Tnfa transcripts. Importantly, blockade of the IL-6 receptor led to diminished swelling of a control CHIKV strain capable of replication in skeletal muscle, reducing swelling to levels observed in mice infected with SKE. These data implicate replication in skeletal muscle cells and release of IL-6 as important mediators of CHIKV disease.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya/fisiología , Citocinas/metabolismo , Músculo Esquelético , Replicación Viral/fisiología , Animales , Línea Celular Tumoral , Fiebre Chikungunya/metabolismo , Fiebre Chikungunya/patología , Cricetinae , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/virología
6.
Pediatr Transplant ; 23(1): e13303, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30338634

RESUMEN

Recent years have brought a rise in newly emergent viral infections, primarily in the form of previously known arthropod-transmitted viruses that have increased significantly in both incidence and geographical range. Of particular note are DENV, CHIKV, and ZIKV, which are transmitted mostly by Aedes species of mosquitoes that exhibit a wide and increasing global distribution. Being important pathogens for the general population, these viruses have the potential to be devastating in the international transplant community, with graft rejection and death as possible outcomes of infection. In this review, we discuss the current state of knowledge for these viruses as well as repercussions of infection in the solid organ and HSCT population, with a focus, when possible, on pediatric patients.


Asunto(s)
Infecciones por Arbovirus , Enfermedades Transmisibles Emergentes , Trasplante de Órganos , Complicaciones Posoperatorias , Infecciones por Arbovirus/diagnóstico , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/etiología , Infecciones por Arbovirus/terapia , Niño , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/etiología , Enfermedades Transmisibles Emergentes/terapia , Salud Global , Humanos , Pediatría , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/terapia , Factores de Riesgo
7.
J Clin Invest ; 127(3): 737-749, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248203

RESUMEN

Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya/fisiología , Virus Chikungunya/patogenicidad , Replicación Viral/fisiología , Aedes/virología , Animales , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/metabolismo , Fiebre Chikungunya/transmisión , Humanos
8.
mBio ; 7(3)2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27222471

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging alphavirus that has caused epidemics of fever, arthralgia, and rash worldwide. There are currently no licensed vaccines or antiviral therapies available for the prevention or treatment of CHIKV disease. We conducted a high-throughput, chemical compound screen that identified digoxin, a cardiac glycoside that blocks the sodium-potassium ATPase, as a potent inhibitor of CHIKV infection. Treatment of human cells with digoxin or a related cardiac glycoside, ouabain, resulted in a dose-dependent decrease in infection by CHIKV. Inhibition by digoxin was cell type-specific, as digoxin treatment of either murine or mosquito cells did not diminish CHIKV infection. Digoxin displayed antiviral activity against other alphaviruses, including Ross River virus and Sindbis virus, as well as mammalian reovirus and vesicular stomatitis virus. The digoxin-mediated block to CHIKV and reovirus infection occurred at one or more postentry steps, as digoxin inhibition was not bypassed by fusion of CHIKV at the plasma membrane or infection with cell surface-penetrating reovirus entry intermediates. Selection of digoxin-resistant CHIKV variants identified multiple mutations in the nonstructural proteins required for replication complex formation and synthesis of viral RNA. These data suggest a role for the sodium-potassium ATPase in promoting postentry steps of CHIKV replication and provide rationale for modulation of this pathway as a broad-spectrum antiviral strategy. IMPORTANCE: Mitigation of disease induced by globally spreading, mosquito-borne arthritogenic alphaviruses requires the development of new antiviral strategies. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics and illuminate host pathways required for viral infection. Our study describes the potent inhibition of Chikungunya virus and related alphaviruses by the cardiac glycoside digoxin and demonstrates a function for the sodium-potassium ATPase in Chikungunya virus infection.


Asunto(s)
Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Digoxina/farmacología , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ouabaína/farmacología , ARN Viral/efectos de los fármacos , ARN Viral/genética , Virus del Río Ross/efectos de los fármacos , Virus Sindbis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Virus/efectos de los fármacos
9.
Cell Host Microbe ; 18(1): 86-95, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26159721

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/ml), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Fiebre Chikungunya/terapia , Virus Chikungunya/inmunología , Inmunización Pasiva/métodos , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/aislamiento & purificación , Quimioprevención/métodos , Virus Chikungunya/fisiología , Modelos Animales de Enfermedad , Humanos , Concentración 50 Inhibidora , Ratones , Unión Proteica , Análisis de Supervivencia , Resultado del Tratamiento , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus/efectos de los fármacos
10.
J Virol ; 88(21): 12180-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25142598

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has reemerged to cause profound epidemics of fever, rash, and arthralgia throughout sub-Saharan Africa, Southeast Asia, and the Caribbean. Like other arthritogenic alphaviruses, mechanisms of CHIKV pathogenesis are not well defined. Using the attenuated CHIKV strain 181/25 and virulent strain AF15561, we identified a residue in the E2 viral attachment protein that is a critical determinant of viral replication in cultured cells and pathogenesis in vivo. Viruses containing an arginine at E2 residue 82 displayed enhanced infectivity in mammalian cells but reduced infectivity in mosquito cells and diminished virulence in a mouse model of CHIKV disease. Mice inoculated with virus containing an arginine at this position exhibited reduced swelling at the site of inoculation with a concomitant decrease in the severity of necrosis in joint-associated tissues. Viruses containing a glycine at E2 residue 82 produced higher titers in the spleen and serum at early times postinfection. Using wild-type and glycosaminoglycan (GAG)-deficient Chinese hamster ovary (CHO) cell lines and soluble GAGs, we found that an arginine at residue 82 conferred greater dependence on GAGs for infection of mammalian cells. These data suggest that CHIKV E2 interactions with GAGs diminish dissemination to lymphoid tissue, establishment of viremia, and activation of inflammatory responses early in infection. Collectively, these results suggest a function for GAG utilization in regulating CHIKV tropism and host responses that contribute to arthritis. IMPORTANCE: CHIKV is a reemerging alphavirus of global significance with high potential to spread into new, immunologically naive populations. The severity of CHIKV disease, particularly its propensity for chronic musculoskeletal manifestations, emphasizes the need for identification of genetic determinants that dictate CHIKV virulence in the host. To better understand mechanisms of CHIKV pathogenesis, we probed the function of an amino acid polymorphism in the E2 viral attachment protein using a mouse model of CHIKV musculoskeletal disease. In addition to influencing glycosaminoglycan utilization, we identified roles for this polymorphism in differential infection of mammalian and mosquito cells and targeting of CHIKV to specific tissues within infected mice. These studies demonstrate a correlation between CHIKV tissue tropism and virus-induced pathology modulated by a single polymorphism in E2, which in turn illuminates potential targets for vaccine and antiviral drug development.


Asunto(s)
Artritis/virología , Virus Chikungunya/fisiología , Proteínas del Envoltorio Viral/metabolismo , Tropismo Viral , Factores de Virulencia/metabolismo , Replicación Viral , Sustitución de Aminoácidos , Animales , Artritis/patología , Células CHO , Virus Chikungunya/patogenicidad , Cricetulus , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Envoltorio Viral/genética , Factores de Virulencia/genética
11.
J Virol ; 88(5): 2385-97, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371059

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly(82) results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg(82) results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25. IMPORTANCE: Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.


Asunto(s)
Sustitución de Aminoácidos , Virus Chikungunya/fisiología , Glicosaminoglicanos/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas del Envoltorio Viral/genética , Infecciones por Alphavirus/metabolismo , Animales , Células CHO , Fiebre Chikungunya , Virus Chikungunya/genética , Virus Chikungunya/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Endosomas/metabolismo , Endosomas/virología , Genotipo , Glicosaminoglicanos/farmacología , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Mutación , Multimerización de Proteína , Electricidad Estática , Células Vero , Proteínas del Envoltorio Viral/química , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
12.
Virology ; 417(2): 268-80, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21784501

RESUMEN

The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.


Asunto(s)
Núcleo Celular/metabolismo , Citomegalovirus/fisiología , Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Sustitución de Aminoácidos/genética , Humanos , Fosforilación
13.
J Virol ; 84(21): 11563-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20739543

RESUMEN

The amino-terminal 290 residues of UL44, the presumed processivity factor of human cytomegalovirus DNA polymerase, possess all of the established biochemical activities of the full-length protein, while the carboxy-terminal 143 residues contain a nuclear localization signal (NLS). We found that although the amino-terminal domain was sufficient for origin-dependent synthesis in a transient-transfection assay, the carboxy-terminal segment was crucial for virus replication and for the formation of DNA replication compartments in infected cells, even when this segment was replaced with a simian virus 40 NLS that ensured nuclear localization. Our results suggest a role for this segment in viral DNA synthesis.


Asunto(s)
Citomegalovirus/fisiología , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Proteínas Virales/fisiología , Replicación Viral , Secuencia de Aminoácidos , Línea Celular , Infecciones por Citomegalovirus , ADN Viral/biosíntesis , Humanos , Señales de Localización Nuclear
14.
J Virol ; 83(15): 7581-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19457994

RESUMEN

The central enzyme responsible for human cytomegalovirus (HCMV) DNA synthesis is a virally encoded DNA polymerase that includes a catalytic subunit, UL54, and a homodimeric accessory subunit, UL44, the presumptive HCMV DNA polymerase processivity factor. The structure of UL44 is similar to that of the eukaryotic processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous other proteins required for faithful DNA replication. We sought to determine whether, like PCNA, UL44 is capable of interacting with multiple DNA replication proteins and, if so, whether these proteins bind UL44 at the site corresponding to where multiple proteins bind to PCNA. Initially, several proteins, including the viral DNA replication factors UL84 and UL57, were identified by mass spectrometry in immunoprecipitates of UL44 from infected cell lysate. The association of UL44/UL84, but not UL44/UL57, was confirmed by reciprocal coimmunoprecipitation of these proteins from infected cell lysates and was resistant to nuclease treatment. Yeast two-hybrid analyses demonstrated that the substitution of residues in UL44 that prevent UL44 homodimerization or abrogate the binding of UL54 to UL44 do not abrogate the UL44/UL84 interaction. Reciprocal glutathione-S-transferase (GST) pulldown experiments using bacterially expressed UL44 and UL84 confirmed these results and, further, demonstrated that a UL54-derived peptide that competes with UL54 for UL44 binding does not prevent the association of UL84 with UL44. Taken together, our results strongly suggest that UL44 and UL84 interact directly using a region of UL44 different from the UL54 binding site. Thus, UL44 can bind interacting replication proteins using a mechanism different from that of PCNA.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , Línea Celular , Citomegalovirus/química , Citomegalovirus/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Unión Proteica , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética
15.
PLoS Pathog ; 5(1): e1000275, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19165338

RESUMEN

The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser(22)). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser(22) is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.


Asunto(s)
Proteína Quinasa CDC2/genética , Citomegalovirus/fisiología , Imitación Molecular/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Bencimidazoles/farmacología , Línea Celular , Núcleo Celular/metabolismo , Infecciones por Citomegalovirus/fisiopatología , Humanos , Lamina Tipo A/metabolismo , Lámina Nuclear/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Ribonucleósidos/farmacología , Replicación Viral/fisiología
16.
J Virol ; 81(17): 9175-82, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17553869

RESUMEN

Although the seven viral proteins required for herpes simplex virus type 1 (HSV-1) DNA replication have been identified, the mechanism by which viral DNA synthesis is regulated is unclear. HSV-1 DNA replication is thought to occur in two stages: origin-dependent DNA replication (stage I) mediated by the origin binding protein (OBP), followed by origin- and OBP-independent DNA replication (stage II). The mechanism that facilitates the switch from stage I to stage II is unknown; however, it must involve the loss of OBP function or OBP itself from the replication initiation complex. Previous studies from this laboratory identified a transcript (UL8.5) and protein (OBPC) that are in frame with and comprise the C terminus of the gene specifying OBP. Because of its DNA binding ability, OBPC has been hypothesized to mediate the switch from stage I to stage II. Here, we identify a second protein (OBPC-2) that is also in frame with the C terminus of OBP but comprises a smaller portion of the protein. We demonstrate that the protein originally identified (OBPC-1) is a cathepsin B-mediated cleavage product of OBP, while OBPC-2 may be the product of the UL8.5 transcript. We further demonstrate that the cleavage of OBP to yield OBPC-1 is dependent upon viral DNA replication. These results suggest that cleavage may be a mechanism by which OBP levels and/or activity are regulated during infection.


Asunto(s)
Catepsina B/metabolismo , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Chlorocebus aethiops , Modelos Biológicos , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Células Vero , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...