Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660960

RESUMEN

Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.

2.
Plant Sci ; 319: 111255, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487664

RESUMEN

Morpho-physiological strategies to deal with water deficit vary among citrus species and the chemical signaling through ABA and anatomical, hydraulic, and physiological traits were evaluated in saplings of Rangpur lime, Swingle citrumelo and Valencia sweet orange. Trunk and roots of Swingle citrumelo presented lower vessel diameter and higher vessel frequency as compared to the other species. However, relative water content at the turgor loss point (RWCTLP), the osmotic potential at full turgor (Ψ0), the osmotic potential at the turgor loss point (ΨTLP), bulk modulus of elasticity (ε) and the xylem water potential when hydraulic conductivity is reduced by 50% (Ψ50) and 88% (Ψ88) indicated similar hydraulic traits among citrus species, with Rangpur lime showing the highest hydraulic safety margin. Roots of Rangpur lime and Swingle citrumelo were more water conductive than ones of Valencia sweet orange, which was linked to higher stomatal conductance. Chemical signaling through ABA prevented shoot dehydration in Rangpur lime under water deficit, with this species showing a more conservative stomatal behavior, sensing, and responding rapidly to low soil moisture. Taken together, our results suggest that Rangpur lime - the drought tolerant species - has an improved control of leaf water status due to chemical signaling and effective stomatal regulation for reducing water loss as well as decreased root hydraulic conductivity for saving water resources under limiting conditions.


Asunto(s)
Citrus , Deshidratación , Citrus/fisiología , Sequías , Hojas de la Planta/fisiología , Xilema/fisiología
3.
Plant Physiol Biochem ; 162: 315-326, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33714146

RESUMEN

Arginine (Arg) metabolism is associated with many cellular and developmental processes in plants and proline, nitric oxide (NO) and polyamines (PAs) have a wide range of physiological functions in plants, including increased tolerance to environmental stresses. This study aimed to test the hypothesis that Arg spraying would stimulate the synthesis of proline, NO and PAs, reducing the oxidative damage caused by water deficit (WD) and increasing drought tolerance of sugarcane plants. Sugarcane plants were sprayed with water or Arg 1 mM, and subjected to WD by gradual addition of polyethylene glycol (PEG-8000) to the nutrient solution. As references, sugarcane plants were grown in nutrient solution without PEG-8000 and sprayed or not with Arg. Our data indicate that exogenous Arg supply improved leaf gas exchange during water deficit and enhanced the root antioxidative protection of sugarcane plants during the recovery period. Arg supply prevented the proline accumulation induced by water deficit and then the main pathway for proline synthesis is likely through glutamate instead of arginine. Although Arg is a substrate for NO and PAs production, supplying Arg had only slight effects in both NO and PAs levels. The spraying of amino acids capable of reducing the harmful effects of drought, such as Arg, can be an alternative to improve crop growth under field conditions.


Asunto(s)
Antioxidantes , Agua , Arginina , Sequías , Hojas de la Planta , Raíces de Plantas
4.
Tree Physiol ; 41(8): 1372-1383, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33517451

RESUMEN

Carbon allocation between source and sink organs determines plant growth and is influenced by environmental conditions. Under water deficit (WD), plant growth is inhibited before photosynthesis and shoot growth tends to be more sensitive than root growth. However, the modulation of the source-sink relationship by rootstocks remains unsolved in citrus trees under WD. Citrus plants grafted on Rangpur lime are drought tolerant, which may be related to a fine coordination of the source-sink relationship for maintaining root growth. Here, we followed 13C allocation and evaluated physiological responses and growth of Valencia orange trees grafted on three citrus rootstocks (Rangpur lime, Swingle citrumelo and Sunki mandarin) under WD. As compared with plants on Swingle and Sunki rootstocks, ones grafted on Rangpur lime showed higher stomatal sensitivity to the initial variation of water availability and less accumulation of non-structural carbohydrates in roots under WD. High 13C allocation found in Rangpur lime roots indicates this rootstock has high sink demand associated with high root growth under WD. Our data suggest that Rangpur lime rootstock used photoassimilates as sources of energy and carbon skeletons for growing under drought, which is likely related to increases in root respiration. Taken together, our data revealed that carbon supply by leaves and delivery to roots are critical for maintaining root growth and improving drought tolerance, with citrus rootstocks showing differential sink strength under WD.


Asunto(s)
Citrus sinensis , Citrus , Sequías , Hojas de la Planta , Raíces de Plantas , Agua
5.
Ecotoxicol Environ Saf ; 91: 39-45, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23391563

RESUMEN

This study was performed to verify whether the exchange of the fuel used in the boilers of a crude oil refinery located in Cubatão (SE Brazil) would result in alterations on gas exchange, growth and leaf injuries in saplings of Psidium guajava 'Paluma'. The purpose of the refinery was to reduce the SO2 emission, but using natural gas as fuel could increase the concentrations of O3 precursors in the atmosphere. Thus a biomonitoring was performed with a native species sensitive to O3. The plants were exposed in five areas (CM1, CM5, CEPEMA, Centro, and RP) at different distances to the refinery, both before and after the fuel exchange. We performed six exposures under environmental conditions, with length of ca. 90 days each. With the utilization of natural gas, the saplings presented reductions in carbon assimilation rate under saturating light conditions (Asat, µmolCO2m(-2)s(-1)) and the stomatal conductance (gs, molH2Om(-2)s(-1)), and increase in height, number of leaves, and dry mass of leaves and shoots. There were also reductions in root dry mass and in the root/shoot ratio. The saplings also presented O3-induced leaf injuries. The responses of P. guajava 'Paluma' were altered after the fuel exchange as a result of a new combination of pollutants in the atmosphere. The fuel exchange has not resulted in environmental benefit to the surrounding forest; it has only altered the contamination profile of the region.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente , Combustibles Fósiles , Psidium/efectos de los fármacos , Brasil , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Psidium/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...