Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 623, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902640

RESUMEN

BACKGROUND: The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. RESULTS: Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS: GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.


Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Reproducción , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Bovinos/crecimiento & desarrollo , Reproducción/genética , Femenino , Masculino , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Desequilibrio de Ligamiento
2.
Animals (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230355

RESUMEN

The assessment of the presence of genotype by environment interaction (GxE) in beef cattle is very important in tropical countries with diverse climatic conditions and production systems. The present study aimed to assess the presence of GxE by using different reaction norm models for eleven traits related to growth, reproduction, and visual score in Nellore cattle. We studied five reaction norm models (RNM), fitting a linear model considering homoscedastic residual variance (RNM_homo), and four models considering heteroskedasticity, being linear (RNM_hete), quadratic (RNM_quad), linear spline (RNM_l-l), and quadratic spline (RNM_q-q). There was the presence of GxE for age at first calving (AFC), scrotal circumference (SC), weaning to yearling weight gain (WYG), and yearling weight (YW). The best models were RNM_l-l for YW and RNM_q-q for AFC, SC, and WYG. The heritability estimates for RNM_l-l ranged from 0.07 to 0.20, 0.42 to 0.61, 0.24 to 0.42, and 0.47 to 0.63 for AFC, SC, WYG, and YW, respectively. The heteroskedasticity in reaction norm models improves the assessment of the presence of GxE for YW, WYG, AFC, and SC. Additionally, the trajectories of reaction norms for these traits seem to be affected by a non-linear component, and selecting robust animals for these traits is an alternative to increase production and reduce environmental sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA