Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 273: 125971, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521020

RESUMEN

T-2 is one of the most potent cytotoxic food-borne mycotoxins. In this work, we have developed and characterized an electrochemical microfluidic immunosensor for T-2 toxin quantification in wheat germ samples. T-2 toxin detection was carried out using a competitive immunoassay method based on monoclonal anti-T-2 antibodies immobilized on the poly(methyl methacrylate) (PMMA) microfluidic central channel. The platinum wire working electrode at the end of the channel was in situ modified by a single-step electrodeposition procedure with reduced graphene oxide (rGO)-nanoporous gold (NPG). T-2 toxin in the sample was allowed to compete with T-2-horseradish peroxidase (HRP) conjugated for the specific recognizing sites of immobilized anti-T-2 monoclonal antibodies. The HRP, in the presence of hydrogen peroxide (H2O2), catalyzes the oxidation of 4-tert-butylcatechol (4-TBC), whose back electrochemical reduction was detected on the nanostructured electrode at -0.15 V. Thus, at low T-2 concentrations in the sample, more enzymatically conjugated T-2 will bind to the capture antibodies, and, therefore, a higher current is expected. The detection limits found for electrochemical immunosensor, and commercial ELISA procedure were 0.10 µg kg-1 and 10 µg kg-1, and the intra- and inter-assay coefficients of variation were below 5.35% and 6.87%, respectively. Finally, our microfluidic immunosensor to T-2 toxin will significantly contribute to faster, direct, and secure in situ analysis in agricultural samples.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Micotoxinas , Nanoporos , Toxina T-2 , Grafito/química , Inmunoensayo/métodos , Microfluídica , Oro/química , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas del Metal/química
2.
Talanta ; 226: 122130, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33676684

RESUMEN

In this work, nanoporous gold (NPG) was prepared according to three different approaches, such as (i) anodization-electrochemical reduction (A-ECR, NPGA), (ii) dynamic hydrogen bubble template (DHBT, NPGB), and (iii) the combination of both methods (NPGA+B). Field-emission scanning electron microscopy (FE-SEM) and cyclic voltammetry (CV) were used to investigate the structural morphology and the electrochemical behavior of the fabricated materials. The NPGA+B electrode showed a large amount of surface defects and/or edges, greater electrochemical surface area (2.5 cm2), and increased roughness factor (35.4). Such outstanding features of the NPGA+B platform were demonstrated by the sensitive detection of methyl parathion (MP) in river water samples. CV results indicated nearly 25-fold, 6-fold, and 2.5-fold higher sensitivity for NPGA+B compared to that of bare Au, NPGA, and NPGB, respectively. Differential pulse voltammetry (DPV) results show a linear behavior in the MP concentration range of 5-50 ng mL-1 with a limit of detection (LOD) of 0.6 ng mL-1 and limit of quantification (LOQ) of 2.0 ng mL-1. Besides, the NPGA+B sensor also revealed excellent selectivity towards MP detection in the presence of other interfering molecules or ions, reproducibility, and repeatability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...