Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Endod ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821264

RESUMEN

INTRODUCTION: A growing body of research supports an association between periapical inflammation and an increased risk of developing systemic diseases. There is currently no scientific evidence to support a causal effect of inflammation on the onset of insulin resistance (IR) in patients with apical periodontitis (AP). The aim of this in vitro study was to evaluate any association between AP and levels of serum inflammatory factors potentially associated with the onset of IR, and to investigate any the effect of root canal treatment (RCT) on these systemic inflammation markers and restoring on the response in vitro to insulin. METHODS: A total of 27 control subjects and 27 patients with AP were enrolled. Patients with AP underwent RCT and were followed-up 6 and 12 months post-treatment. ELISAs were used to evaluate plasma serum levels of pro-inflammatory cytokines interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor (TNF)-α. The human pancreatic epithelioid carcinoma cell line (PANC-1) was used to assess t The response in vitro to insulin was assessed by measuring glucose consumption in a human pancreatic epithelioid carcinoma cell line (PANC-1) treated with sera from healthy and AP subjects. RESULTS: At baseline AP was associated with significantly higher levels of IL-1, IL-6, and IL-8 in the serum of untreated (AP) patients with AP vs controls (p<0.001). Glucose consumption decreased in pancreatic cells incubated with baseline serum from patients with AP, in a manner proportional to total cytokines amount. Notably, endodontic treatment was associated with reduced levels of cytokines (p<0.001) and improved response to insulin in AP group (p<0.001). CONCLUSIONS: Our findings suggest that AP may promote inflammatory-driven IR in an in-vitro model, and that RCT may ameliorate inflammatory mediators in vivo and the cellular response to insulin in vitro.

2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397013

RESUMEN

Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.


Asunto(s)
Sobrecarga de Hierro , Enfermedades Neurodegenerativas , Humanos , Encéfalo , Barrera Hematoencefálica/fisiología , Hierro , Sobrecarga de Hierro/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901768

RESUMEN

Vitamin D performs a differentiating, metabolic and anti-inflammatory function, through genomic, non-genomic and mitochondrial mechanisms of action [...].


Asunto(s)
Receptores de Calcitriol , Vitamina D , Humanos , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo , Vitaminas/metabolismo , Mitocondrias/metabolismo
4.
Antioxidants (Basel) ; 12(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36830041

RESUMEN

SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.

5.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887313

RESUMEN

In our recent studies, we have developed a thermodynamic biochemical model able to select the resonant frequency of an extremely low frequency electromagnetic field (ELF-EMF) specifically affecting different types of cancer, and we have demonstrated its effects in vitro. In this work, we investigate the cellular response to the ELF electromagnetic wave in three-dimensional (3D) culture models, which mimic the features of tumors in vivo. Cell membrane was modelled as a resistor-capacitor circuit and the specific thermal resonant frequency was calculated and tested on two-dimensional (2D) and three-dimensional (3D) cell cultures of human pancreatic cancer, glioblastoma and breast cancer. Cell proliferation and the transcription of respiratory chain and adenosine triphosphate synthase subunits, as well as uncoupling proteins, were assessed. For the first time, we demonstrate that an ELF-EMF hampers growth and potentiates both the coupled and uncoupled respiration of all analyzed models. Interestingly, the metabolic shift was evident even in the 3D aggregates, making this approach particularly valuable and promising for future application in vivo, in aggressive cancer tissues characterized by resistance to treatments.


Asunto(s)
Campos Electromagnéticos , Glioblastoma , Proliferación Celular , Radiación Electromagnética , Humanos
6.
Nutrients ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889845

RESUMEN

Skin repair requires the activation of keratinocytes and is mediated by controlled inflammation and cell migration and proliferation, ending with the regeneration of well-differentiated cell layers. Whey derivatives contain galactooligosaccharides (GOS), which have potential beneficial effects on wound healing due to their activity as toll-like receptor ligands, although their direct nonprebiotic effects in the skin have not yet been described. In this study, we investigated the effects of different whey-derived products and purified GOS on a human keratinocyte cell line. We found that the inflammatory cytokine interleukin-8 (IL-8) was upregulated by nuclear factor kappa B (NF-kB) signaling triggered by whey derivatives and GOS and that wound healing was accelerated by promoting cell migration and the loss of E-cadherin in the absence of epithelial-mesenchymal transition. Interestingly, the treatments enhanced the mitochondrial function in association with the translocation of the Forkhead Box O1 (FOXO-1) transcription factor. Finally, we detected the increased expression of the differentiation markers induced by GOS and whey derivatives. All together, our results show that GOS-containing products can promote wound closure and skin health by direct activity on keratinocyte functions. Among the preparations tested, the fermented compound produced by autochthonous microorganisms was the most active in modulating keratinocyte activity, supporting the biological value of whey derivatives for health.


Asunto(s)
FN-kappa B , Suero Lácteo , Movimiento Celular , Proliferación Celular , Humanos , Queratinocitos , FN-kappa B/metabolismo , Transducción de Señal , Suero Lácteo/metabolismo , Cicatrización de Heridas
7.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457100

RESUMEN

Vitamin D has been described as a differentiative hormone, but this definition is reductive for a molecule targeting every tissue, produced in its active form by many kinds of cells and effective on the whole life of cells by different mechanisms, which lead to nuclear, non-genomic and mitochondrial effects [...].


Asunto(s)
Vitamina D , Vitaminas , Humanos , Mitocondrias , Receptores de Calcitriol
8.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408981

RESUMEN

The genomic activity of vitamin D is associated with metabolic effects, and the hormone has a strong impact on several physiological functions and, therefore, on health. Among its renowned functions, vitamin D is an immunomodulator and a molecule with an anti-inflammatory effect, and, recently, it has been much studied in relation to its response against viral infections, especially against COVID-19. This review aims to take stock of the correlation studies between vitamin D deficiency and increased risks of severe COVID-19 disease and, similarly, between vitamin D deficiency and acute respiratory distress syndrome. Based on this evidence, supplementation with vitamin D has been tested in clinical trials, and the results are discussed. Finally, this study includes a biochemical analysis on the effects of vitamin D in the body's defense mechanisms against viral infection. In particular, the antioxidant and anti-inflammatory functions are considered in relation to energy metabolism, and the potential, beneficial effect of vitamin D in COVID-19 is described, with discussion of its influence on different biochemical pathways. The proposed, broader view of vitamin D activity could support a better-integrated approach in supplementation strategies against severe COVID-19, which could be valuable in a near future of living with an infection becoming endemic.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Deficiencia de Vitamina D , Humanos , SARS-CoV-2 , Vitamina D/metabolismo , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Vitaminas/uso terapéutico
9.
Antioxidants (Basel) ; 11(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204084

RESUMEN

Inflammation involving the innate and adaptive immune systems is a normal response to infection; however, when allowed to continue unchecked, inflammation may result in several pathologies. Natural molecules with antioxidant properties can target the key players of inflammation and exert beneficial health effects. In this study, human normal bronchial (Beas-2B) and prostate (HPrEpiC) epithelial cell lines were exposed to infectious stimulation and treated with phycocyanin (PC) and palmitoylethanolamide (PEA), with the aim of demonstrating the enhanced antioxidant and anti-inflammatory properties of the combination. The cotreatment protected from cytotoxicity and greatly abated both the production of radical oxygen species (ROS) and the transcription of several inflammatory cytokines. Oxidative stress and inflammation were curtailed by affecting three main pathways: (1) inhibition of cyclooxygenase-2 enzyme and consequent decrease of signaling generating ROS; (2) increased synthesis of glutathione and therefore strengthening of the natural antioxidant defenses of the cells; (3) decreased infection-driven mitochondrial respiratory burst which generates oxidative stress. Based on the mounting interest in using nutraceuticals as adjuvants in the clinical practice, the present study unveils new mechanisms of action and enhanced efficacy of PC and PEA, supporting the possible exploitation of this combination in human disorders.

10.
Mol Biol Rep ; 49(2): 1089-1101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34797489

RESUMEN

BACKGROUND: Emerging evidence suggest that DNA-PK complex plays a role in the cellular response to oxidative stress, in addition to its function of double strand break (DSB) repair. In this study we evaluated whether DNA-PK participates in oxidative stress response and whether this role is independent of its function in DNA repair. METHODS AND RESULTS: We used a model of H2O2-induced DNA damage in PC12 cells (rat pheochromocytoma), a well-known neuronal tumor cell line. We found that H2O2 treatment of PC12 cells induces an increase in DNA-PK protein complex levels, along with an elevation of DNA damage, measured both by the formation of γΗ2ΑX foci, detected by immunofluorescence, and γH2AX levels detected by western blot analysis. After 24 h of cell recovery, γΗ2ΑX foci are repaired both in the absence and presence of DNA-PK kinase inhibitor NU7026, while an increase of apoptotic cells is observed when DNA-PK activity is inhibited, as revealed by counting pycnotic nuclei and confirmed by FACS analysis. Our results suggest a role of DNA-PK as an anti-apoptotic factor in proliferating PC12 cells under oxidative stress conditions. The anti-apoptotic role of DNA-PK is associated with AKT phosphorylation in Ser473. On the contrary, in differentiated PC12 cells, were the main pathway to repair DSBs is DNA-PK-mediated, the inhibition of DNA-PK activity causes an accumulation of DNA damage. CONCLUSIONS: Taken together, our results show that DNA-PK can protect cells from oxidative stress induced-apoptosis independently from its function of DSB repair enzyme.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo/fisiología , Animales , Apoptosis/fisiología , Cromonas , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/genética , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Morfolinas , Proteínas Nucleares/genética , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
11.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208208

RESUMEN

The inflammatory cytokine TGFß is both a tumor suppressor during cancer initiation and a promoter of metastasis along cancer progression. Inflammation and cancer are strictly linked, and cancer onset often correlates with the insufficiency of vitamin D, known for its anti-inflammatory properties. In this study, we investigated the interplay between TGFß and vitamin D in two models of human pancreatic cancer, and we analyzed the metabolic effects of a prolonged TGFß treatment mimicking the inflammatory environment of pancreatic cancer in vivo. We confirmed the induction of the vitamin D receptor previously described in epithelial cells, but the inhibitory effects of vitamin D on epithelial-mesenchymal transition (EMT) were lost when the hormone was given after a long treatment with TGFß. Moreover, we detected an ROS-mediated toxicity of the acute treatment with TGFß, whereas a chronic exposure to low doses had a protumorigenic effect. In fact, it boosted the mitochondrial respiration and cancer cell migration without ROS production and cytotoxicity. Our observations shed some light on the multifaceted role of TGFß in tumor progression, revealing that a sustained exposure to TGFß at low doses results in an irreversibly increased EMT associated with a metabolic modulation which favors the formation of metastasis.

12.
Int J Mol Sci ; 22(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064458

RESUMEN

Vitamin D and beta-glucans are both immunostimulants. Vitamin D exerts its beneficial effects on many components of the immune system. In macrophages, the hormone modulates both phagocytic activity and cytokine production; therefore, it plays an important role in mediating the innate immune response to infection. The immunomodulatory properties of beta-glucans are attributed to the ability of these fungal cell wall polysaccharides to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes and macrophages. The intracellular signaling pathways activated by beta-glucans lead to enhanced phagocytosis and cytokine response. In this study we investigated the possible potentiation of immunomodulatory properties of the combined treatment with vitamin D and beta-glucans. The effects of 100 nM 1,25-dihydroxyvitamin D3 or 100 µg/mL beta-glucans were evaluated in human macrophages in terms of cytokine production, intracellular vesicle acidification and changes in energy metabolism, three hallmarks of macrophage antimicrobial activation. We found that all the analyzed parameters were enhanced by the co-treatment compared to the response to single molecules. The results of this study support the validity of a novel therapeutic approach that could boost the immune response, taking advantage of the synergy between two natural compounds.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Calcitriol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , beta-Glucanos/farmacología , Diferenciación Celular , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Sinergismo Farmacológico , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-8/genética , Interleucina-8/inmunología , Macrófagos/citología , Macrófagos/inmunología , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/inmunología , Transducción de Señal , Células THP-1 , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/inmunología
13.
Eur J Ophthalmol ; : 11206721211018377, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34011203

RESUMEN

PURPOSE: The aim of this study was to assess whether the intraoperative use of the cold eye irrigation balanced salt solution (BSS) could have a protective effect in preventing the anterior chamber flare and conjunctival hyperemia and, thus, in reducing patients discomfort after phacoemulsification. MATERIALS AND METHODS: About 214 patients were enrolled and randomly divided into: patients whose eye were irrigated with BSS at ~ 20°C (Group 1) and patients whose eye were irrigated with BSS at 2.7°C (Group 2). Anterior chamber flare, visual analogue score and conjunctival hyperemia were evaluated at 1, 3, 5, and 30 days after surgery. RESULTS: In patients of Group 2 the anterior chamber flare, the visual analogue score and the conjunctival hyperemia, used as parameters to evaluated clinical inflammation, at 1 day after surgery were significantly lower than those in Group 1 who received BSS solution at operating room temperature (p < 0.001), while at day 3, 5, and 30 there were not any significant differences. CONCLUSION: Our study provided evidence supporting the efficacy of the treatment with cold irrigation solution on reduction of anterior chamber flare, pain and conjunctival hyperemia already at 1 day after phacoemulsification, suggesting that cooling procedure was fully effective at controlling early post-operative inflammation.

14.
Cancers (Basel) ; 13(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799965

RESUMEN

Although asbestos has been banned in most countries around the world, malignant pleural mesothelioma (MPM) is a current problem. MPM is an aggressive tumor with a poor prognosis, so it is crucial to identify new markers in the preventive field. Asbestos exposure induces oxidative stress and its carcinogenesis has been linked to a strong oxidative damage, event counteracted by antioxidant systems at the pulmonary level. The present study has been focused on some redox-sensitive transcription factors that regulate cellular antioxidant defense and are overexpressed in many tumors, such as Nrf2 (Nuclear factor erythroid 2-related factor 2), Ref-1 (Redox effector factor 1), and FOXM1 (Forkhead box protein M1). The research was performed in human mesothelial and MPM cells. Our results have clearly demonstrated an overexpression of Nrf2, Ref-1, and FOXM1 in mesothelioma towards mesothelium, and a consequent activation of downstream genes controlled by these factors, which in turn regulates antioxidant defense. This event is mediated by oxidative free radicals produced when mesothelial cells are exposed to asbestos fibers. We observed an increased expression of Nrf2, Ref-1, and FOXM1 towards untreated cells, confirming asbestos as the mediator of oxidative stress evoked at the mesothelium level. These factors can therefore be considered predictive biomarkers of MPM and potential pharmacological targets in the treatment of this aggressive cancer.

15.
Front Endocrinol (Lausanne) ; 11: 559586, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133014

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor, often associated with exposure to asbestos and characterized by poor prognosis and limited treatment options. The biologically active form of vitamin D, calcitriol, exerts anticancer effects in many cell types, both alone and in combination with chemotherapy drugs, through binding to vitamin D receptor (VDR); however, the role of calcitriol in MPM is still unknown. This study aimed to determine the potential antitumor role of calcitriol in MPM. The results showed that calcitriol reduces cell viability and proliferation in human MPM cells lines, which express both cytoplasmic and nuclear VDR; furthermore, calcitriol potentiated the inhibitory activity of the chemotherapy drug PEM. These effects were paralleled by cell cycle arrest and inhibition in expression of c-Myc and cyclins involved in cell cycle progression. Exposure of MPM cells to calcitriol also produced an alteration in mitochondrial function and inhibition in the expression of respiratory chain complex subunits. Finally, the inhibitory effects of calcitriol were also observed on viability of human primary MPM cells. Collectively, these results indicate a novel anticancer role for calcitriol in MPM, suggesting potential for vitamin D derivatives, alone or in combination with chemotherapy, in the treatment of this malignancy.


Asunto(s)
Calcitriol/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Mesotelioma Maligno/patología , Vitaminas/farmacología , Calcitriol/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Humanos , Mesotelioma Maligno/tratamiento farmacológico , Células Tumorales Cultivadas , Vitaminas/uso terapéutico
16.
R Soc Open Sci ; 7(7): 200299, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32874627

RESUMEN

The fight against a multifaceted incurable disease such as cancer requires a multidisciplinary approach to overcome the multitude of molecular defects at its origin. Here, a new thermophysical biochemical approach has been suggested and associated with the use of electromagnetic fields to control the growth of cancer cells. In particular, thermodynamic analysis of the heat transfer is developed in correlation with cellular parameters such as the volume/area ratio. We propose that the electromagnetic wave, at the specific frequency calculated as the characteristic response time of any cell type to the external thermal perturbation, can affect resonant intracellular molecular oscillations. The biochemical model hypothesizes that microtubules are stabilized, and the impact is predicted on cell growth, migration and mitochondrial activity. Experimental validation of the theoretical results shows that the thermodynamic analysis allows the application of the specific electromagnetic field able to decrease cancer cell invasion and proliferation.

17.
Antioxidants (Basel) ; 9(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708578

RESUMEN

The novel COVID-19 pandemic is affecting the world's population differently: mostly in the presence of conditions such as aging, diabetes and hypertension the virus triggers a lethal cytokine storm and patients die from acute respiratory distress syndrome, whereas in many cases the disease has a mild or even asymptomatic progression. A common denominator in all conditions associated with COVID-19 appears to be the impaired redox homeostasis responsible for reactive oxygen species (ROS) accumulation; therefore, levels of glutathione (GSH), the key anti-oxidant guardian in all tissues, could be critical in extinguishing the exacerbated inflammation that triggers organ failure in COVID-19. The present review provides a biochemical investigation of the mechanisms leading to deadly inflammation in severe COVID-19, counterbalanced by GSH. The pathways competing for GSH are described to illustrate the events concurring to cause a depletion of endogenous GSH stocks. Drawing on evidence from literature that demonstrates the reduced levels of GSH in the main conditions clinically associated with severe disease, we highlight the relevance of restoring GSH levels in the attempt to protect the most vulnerable subjects from severe symptoms of COVID-19. Finally, we discuss the current data about the feasibility of increasing GSH levels, which could be used to prevent and subdue the disease.

18.
Pharmaceuticals (Basel) ; 13(7)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32605133

RESUMEN

Exogenous human follicle-stimulating hormone (hFSH), either derived from extraction and purification from the urine or obtained by recombinant technology in the form of follitropin α, ß and δ (rFSH), has been used for decades in the treatment of infertility. The main applications of FSH treatment in the woman have been, and still are, ovulation induction in oligo-anovulatory subjects, and stimulation of the development of a cohort of follicles in patients undergoing controlled ovarian stimulation (COS) for in vitro fertilization (IVF). In the last years, two biosimilars of follitropin alfa, rFSH compounds structurally and functionally similar to the originator, have been approved and marketed for clinical use in Europe. Moreover, some other rFSH biosimilars are currently under investigation. The objective of this article is to review the available evidences comparing the efficacy, safety, and cost-effectiveness of rFSH follitropin alpha originator with its biosimilars, discussing the clinical trials that allowed biosimilars to get registration and marketing authorization.

19.
J Assist Reprod Genet ; 37(6): 1409-1420, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32436046

RESUMEN

To assess whether morphokinetic features at the cleavage stage together with specific gene expression in cumulus cells (CCs) may be used to predict whether human embryos are able to achieve the expanded blastocyst stage on day 5. Eighty-one embryos were cultured using the Geri plus® time-lapse system. Twenty-seven embryos progressing to the expanded blastocyst stage (BL group) were compared with thirty-five embryos showing developmental arrest (AR group) and nineteen reaching the stage of early or not fully expanded blastocyst (nBL group). The analyzed morphokinetic variables were pronuclear appearance (tPNa), pronuclear fading (tPNf), and completion of cleavage to two, three, four, and eight cells (t2, t3, t4, and t8). CCs were analyzed by RT-qPCR for bone morphogenetic protein 15 (BMP15), cytochrome c oxidase subunit II (COXII), ATP synthase subunit 6 (MT-ATP6), connexin 43 (Cx43), and heme oxygenase-1 (HO-1). Embryos of BL group showed a significantly faster kinetic. BMP15, COXII, and MT-ATP6 mRNA expression was significantly higher in CCs of BL group embryos, whereas Cx43 and HO-1 mRNA levels were higher in AR group. Kinetic parameters and gene expression were not significantly different between either the BL and nBL groups or the AR and nBL groups. ROC curves showed that the most predictive cut-offs were t2 < 26.25 for morphokinetics and COXII > 0.3 for gene expression. Multivariable logistic regression analysis showed that morphokinetic variables and gene expression were both valuable, independent predictors of embryo development to expanded blastocyst. Our results suggest the possibility of developing integrated prediction models for early embryo selection at the cleavage stage.


Asunto(s)
Fase de Segmentación del Huevo/metabolismo , Células del Cúmulo/metabolismo , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/genética , Adulto , Blastocisto/metabolismo , Blastocisto/ultraestructura , Fase de Segmentación del Huevo/ultraestructura , Células del Cúmulo/ultraestructura , Implantación del Embrión/genética , Implantación del Embrión/fisiología , Transferencia de Embrión/métodos , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Imagen de Lapso de Tiempo
20.
Pharmaceuticals (Basel) ; 13(4)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326563

RESUMEN

We aimed at evaluating the long-term effects of l-cysteine oral supplementation to basic fibroblast growth factor (bFGF) eye-drops on corneal re-epithelization and transparency in myopic patients subjected to photorefractive keratectomy (PRK). Forty patients subjected to bilateral PRK for myopia were enrolled and randomly divided into two groups receiving an additional therapy together with the standard postoperative treatment consisting in local tobramycin 0.3%, dexamethasone 0.1%, diclofenac 0.1%, and 0.2% hyaluronate. Group 1 included 20 patients (11 males and 9 females; 34.09 ± 8 years of age) receiving only bFGF eye-drops (10 µg/10 µL) four times a day for 7 days starting from the day of surgery; Group 2 included 20 patients (12 males and 8 females; 37.35 ± 11.5 years of age) who were postoperatively administered with topical basic fibroblast growth factor (bFGF; 10 µg/10 µL) four times a day for 7 days plus oral l-cysteine supplementation (500 mg/capsule) once a day for 15 days, starting 7 days before PRK. Patients were followed-up for 12 months. Clinical ophthalmologic parameters were recorded for all the 80 examined eyes. The corneal transparency was evaluated in vivo by slit lamp and confocal microscopy. The data showed that: (a) the corneal haze occurred in a smaller percentage of the patients who were postoperatively administered with topical bFGF plus oral l-cysteine supplementation (Group 2) compared to patients who received only bFGF (Group 1); (b) at 6 months of follow-up, the stromal mean image brightness of the patients belonging to Group 2 was significantly lower than that of the Group 1 (p < 0.03), and, interestingly, the difference was even more evident at 12 month from the treatment (p < 0.001). Moreover, the final mean of the spherical equivalent refraction was -0.06 ± 0.2 D in Group 1 and -0.08 ± 0.3 D in Group 2, whereas the final uncorrected distance visual acuity (UDVA) was equal or superior to 20/25 in 100% of eyes in both Group 1 and 2. Post refractive patients can benefit from the administration of l-cysteine before the surgery and in association with bFGF in the early postoperative period, showing a faster corneal re-epithelization able to prevent corneal haze in the long-term recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...