Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792661

RESUMEN

Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, particularly in nitrogen-deficient soils. Combining ability and genetic relationships among parental lines is crucial for breeding superior hybrids under diverse nitrogen levels. This study aimed to assess the genetic diversity of maize inbred lines using simple sequence repeat (SSR) markers and evaluate their combining ability to identify superior hybrids under low-N and recommended conditions. Local and exotic inbred lines were genotyped using SSR markers, revealing substantial genetic variation with high gene diversity (He = 0.60), moderate polymorphism information content (PIC = 0.54), and an average of 3.64 alleles per locus. Twenty-one F1 hybrids were generated through a diallel mating design using these diverse lines. These hybrids and a high yielding commercial check (SC-131) were field-tested under low-N and recommended N conditions. Significant variations (p < 0.01) were observed among nitrogen levels, hybrids, and their interaction for all recorded traits. Additive genetic variances predominated over non-additive genetic variances for grain yield and most traits. Inbred IL3 emerged as an effective combiner for developing early maturing genotypes with lower ear placement. Additionally, inbreds IL1, IL2, and IL3 showed promise as superior combiners for enhancing grain yield and related traits under both low-N and recommended conditions. Notably, hybrids IL1×IL4, IL2×IL5, IL2×IL6, and IL5×IL7 exhibited specific combining abilities for increasing grain yield and associated traits under low-N stress conditions. Furthermore, strong positive associations were identified between grain yield and specific traits like plant height, ear length, number of rows per ear, and number of kernels per row. Due to their straightforward measurability, these relationships underscore the potential of using these traits as proxies for indirect selection in early breeding generations, particularly under low-N stress. This research contributes to breeding nitrogen-efficient maize hybrids and advances our understanding of the genetic foundations for tolerance to nitrogen limitations.

2.
Plants (Basel) ; 12(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37514213

RESUMEN

Calcium is one of the most limiting factors for the growth and reproduction of peanut, which ultimately affects pod and seed yields. A two-year field experiment was carried out to assess the impact of five calcium applications, including nano-calcium and conventional forms, on growth, leaf nutrient content, yield traits, and quality parameters of three diverse peanut cultivars (Ismailia-1, Giza-5, and Giza-6). The applied calcium applications were calcium sulfate, which is recommended for commercial peanut cultivation and commonly referred to as gypsum (coded as Ca-1), calcium nitrate (Ca-2), nano-calcium nitrate (Ca-3), 50% calcium nitrate + 50% nano-calcium (Ca-4), and 50% calcium sulfate + 50% nano-calcium (Ca-5). Calcium sulfate (gypsum, Ca-1) was soil-supplied during the seedbed preparation as recommended, while the other calcium applications (Ca-2, Ca-3, Ca-4, and Ca-5) were exogenously sprayed three times at 30, 45, and 60 days after sowing. The soil of the experimental site was alkaline, with a high pH of 8.6. The results revealed significant differences among cultivars, calcium applications, and their interactions. The soil-supplied gypsum Ca-1 displayed lower agronomic performance on all recorded growth, leaf nutrient content, yield traits, and quality parameters. On the other hand, the foliar-supplied calcium, particularly Ca-4 and Ca-5, displayed superior effects compared to the other simple calcium forms. Ca-4 and Ca-5 produced significantly higher seed yield (3.58 and 3.38 t/ha) than the simple recommended form (Ca-1, 2.34 t/ha). This could be due to the difficulty of calcium uptake from soil-supplied calcium under high soil pH compared to the exogenously sprayed nano-calcium form. Moreover, the superior performance of Ca-4 and Ca-5 could be caused by the mixture of fertilizers from the synergistic effect of calcium and nitrate or sulfate. Furthermore, the effect of nitrate was applied in nano form in the Ca4 and Ca-5 treatments, which contributed to improving nutrient uptake efficiency and plant growth compared to the other treatments. The peanut cultivar Giza-6 showed superiority for most measured traits over the other two cultivars. The interaction effect between the assessed cultivars and calcium applications was significant for various traits. The cultivar Giza-6 showed a significant advantage for most measured traits with the mixture of 50% calcium nitrate + 50% nano-calcium (Ca-4). Conclusively, the results pointed out the advantage of the exogenously sprayed nano-calcium form combined with calcium nitrate or calcium sulfate for promoting growth, leaf nutrient content, yield, and quality traits of peanut, particularly with high-yielding cultivars under sandy soil with high pH.

3.
Plants (Basel) ; 11(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36432804

RESUMEN

The Iberian Peninsula was the place where pepper (Capsicum annuum) entered Europe and dispersed to other continents but was also an important secondary center for its diversification. The current work evaluated the phenotypic diversity existing in this region and investigated how that evolved from Capsicum native areas (Mexico and Andean Region). For that purpose, the high-throughput phenotyping tool Tomato Analyzer was employed. Descriptors related to size and shape were the most distinctive among fruit types, reflecting a broad diversity for Iberian peppers. These traits likely reflected those suffering from more intensive human selections, driving the worldwide expansion of C. annuum. Iberian peppers maintained close proximity to the American accessions in terms of fruit phenomics. The highest similarities were observed for those coming from the southeastern edge of the Peninsula, while northwestern accessions displayed more significant differences. Common fruit traits (small, conical) suggested that Portuguese and Spanish landraces may have arisen from an ancient American population that entered the south of Spain and promptly migrated to the central and northern territories, giving rise to larger, elongated, and blocky pods. Such lineages would be the result of adaptations to local soil-climate factors prevailing in different biogeographic provinces.

4.
Physiol Mol Biol Plants ; 27(11): 2517-2532, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34924708

RESUMEN

Bulb onion is cultivated throughout the world for consumption as vegetable and processed products. Although having high global demand and economic significance, information about genetic diversity and genomic resources is limited. This study investigated the variability of 96 accessions representing seventeen countries. Out of 145 SSR markers, 62 SSRs amplified and 15 SSRs gave consistent polymorphic bands. Fifty three alleles were detected with an average of 3.533 alleles per locus. PIC value ranged from 0.219 (ACM463) to 0.715 (ACM091). Structure and cluster analysis grouped the onion accessions into two clusters. Discriminant analysis of principal components, a tool that maximizes variation between groups while minimizing that within groups, assorted accessions into five clusters. Analysis of molecular variance revealed maximum variation within the populations than among the populations. Highest genetic differentiation (FST = 0.11045; p < 0.001) was observed between Europe and Japan populations whereas the lowest genetic differentiation (FST = 0.05714; p < 0.001) was recorded between India and Japan. Principal component analysis of morphological traits suggested two principal components cumulatively accounting for 74.4% of the total variance. First component (PC1) was positively and strongly correlated with bulbing whereas second component (PC2) had leaf colour with the highest coefficient. Clustering was not on the basis of bulb colour, bulb formation, or flowering but on the basis of geographical origin. Based on clustering, crossing of distantly related accessions can provide an insight about the hybrid vigour of these diverse accessions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01101-3.

5.
Plants (Basel) ; 9(8)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759769

RESUMEN

In this work, the impact of pepper (Capsicum spp.) fruits morphology on their composition for health-promoting compounds was investigated. For that purpose, pepper accessions from Ecuador, one of the hotspots in Capsicum's origin, were analyzed for ascorbic acid, polyphenols, capsaicinoids, and prevention of cholesterol oxidation. Plant and fruit phenomics were assessed with conventional descriptors and Tomato Analyzer digital traits. Significant differences among accessions and species revealed a large diversity within the collection. The Capsicum frutescens group displayed the highest levels of capsaicinoids, whereas the polyphenols shortly varied among the five domesticated species. Capsicum pubescens exhibited the lowest content of ascorbic acid. The conventional descriptors describing the magnitude of plants and fruits, as well as digital attributes under the categories of size, shape index, and latitudinal section, mostly explained the variance among Capsicum groups. Correlation test revealed that phytochemical components were negatively correlated with the morphometric fruit attributes, suggesting that huge fruits contained lower amounts of nutraceutical compounds. Multivariate analysis showed that parameters related to fruit size, shape, and nutraceutical composition primarily contribute to the arrangement of pepper accessions. Such results suggested that those traits have been subjected to higher selection pressures imposed by humans.

6.
Plant Sci ; 258: 12-20, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28330555

RESUMEN

Verticillium dahliae is an economically relevant soilborne pathogen that causes vascular wilt in several crops, including pepper (Capsicum annuum). Fungal infection is usually visualized as a vascular browning, likely due to the onset of phenylpropanoid metabolism, which also seems to play a crucial role in the tolerance of some pepper varieties. In the current work, the potential function of distinct phenylpropanoid derivatives (suberin, lignin and phenolic compounds) in the pepper tolerance response against V. dahliae, was investigated. Histochemical and biochemical analyses ruled out suberin as a key player in the pepper-fungus interaction. However, changes observed in lignin composition and higher deposition of bound phenolics in infected stems seemed to contribute to the reinforcement of cell walls and the impairment of V. dahliae colonization. Most importantly, this is the first time that the accumulation of the hydroxycinnamic acid amide N-feruloyltyramine was reported in pepper stems in response to a vascular fungus. Fungitoxic activity for that hydroxycinnamate-tyramine conjugate was demonstrated as well.


Asunto(s)
Capsicum/microbiología , Enfermedades de las Plantas/microbiología , Propanoles/metabolismo , Verticillium/patogenicidad , Capsicum/metabolismo , Pared Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Fenoles/metabolismo , Tiramina/análogos & derivados , Tiramina/metabolismo
7.
Plant Genome ; 9(2)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27898833

RESUMEN

Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus) conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site-leucine-rich repeat containing protein) genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation) in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing) tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.


Asunto(s)
Resistencia a la Enfermedad/genética , Hordeum/genética , Familia de Multigenes/genética , Proteínas NLR/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Hongos/fisiología , Hordeum/microbiología , Sitios de Carácter Cuantitativo
8.
Plant Genome ; 8(3): eplantgenome2015.06.0045, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33228270

RESUMEN

The aim of this study was to estimate the accuracy and convergence of newly developed barley (Hordeum vulgare L.) genomic resources, primarily genome zipper (GZ) and population sequencing (POPSEQ), at the genome-wide level and to assess their usefulness in applied barley breeding by analyzing seven known loci. Comparison of barley GZ and POPSEQ maps to a newly developed consensus genetic map constructed with data from 13 individual linkage maps yielded an accuracy of 97.8% (GZ) and 99.3% (POPSEQ), respectively, regarding the chromosome assignment. The percentage of agreement in marker position indicates that on average only 3.7% GZ and 0.7% POPSEQ positions are not in accordance with their centimorgan coordinates in the consensus map. The fine-scale comparison involved seven genetic regions on chromosomes 1H, 2H, 4H, 6H, and 7H, harboring major genes and quantitative trait loci (QTL) for disease resistance. In total, 179 GZ loci were analyzed and 64 polymorphic markers were developed. Entirely, 89.1% of these were allocated within the targeted intervals and 84.2% followed the predicted order. Forty-four markers showed a match to a POPSEQ-anchored contig, the percentage of collinearity being 93.2%, on average. Forty-four markers allowed the identification of twenty-five fingerprinted contigs (FPCs) and a more clear delimitation of the physical regions containing the traits of interest. Our results demonstrate that an increase in marker density of barley maps by using new genomic data significantly improves the accuracy of GZ. In addition, the combination of different barley genomic resources can be considered as a powerful tool to accelerate barley breeding.

9.
PLoS One ; 9(12): e116276, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25545628

RESUMEN

The successful exploitation of germplasm banks, harbouring plant genetic resources indispensable for plant breeding, will depend on our ability to characterize their genetic diversity. The Vegetable Germplasm Bank of Zaragoza (BGHZ) (Spain) holds an important Capsicum annuum collection, where most of the Spanish pepper variability is represented, as well as several accessions of other domesticated and non-domesticated Capsicum spp from all over the five continents. In the present work, a total of 51 C. annuum landraces (mainly from Spain) and 51 accessions from nine Capsicum species maintained at the BGHZ were evaluated using 39 microsatellite (SSR) markers spanning the whole genome. The 39 polymorphic markers allowed the detection of 381 alleles, with an average of 9.8 alleles per locus. A sizeable proportion of alleles (41.2%) were recorded as specific alleles and the majority of these were present at very low frequencies (rare alleles). Multivariate and model-based analyses partitioned the collection in seven clusters comprising the ten different Capsicum spp analysed: C. annuum, C. chinense, C. frutescens, C. pubescens, C. bacatum, C. chacoense and C. eximium. The data clearly showed the close relationships between C. chinense and C. frutescens. C. cardenasii and C. eximium were indistinguishable as a single, morphologically variable species. Moreover, C. chacoense was placed between C. baccatum and C. pubescens complexes. The C. annuum group was structured into three main clusters, mostly according to the pepper fruit shape, size and potential pungency. Results suggest that the diversification of C. annuum in Spain may occur from a rather limited gene pool, still represented by few landraces with ancestral traits. This ancient population would suffer from local selection at the distinct geographical regions of Spain, giving way to pungent and elongated fruited peppers in the South and Center, while sweet blocky and triangular types in Northern Spain.


Asunto(s)
Capsicum/genética , Variación Genética , Filogenia , Teorema de Bayes , Análisis por Conglomerados , Ecotipo , Sitios Genéticos , Marcadores Genéticos , Análisis Multivariante , Análisis de Componente Principal , España , Especificidad de la Especie
10.
Theor Appl Genet ; 126(12): 3091-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24068343

RESUMEN

KEY MESSAGE: In two Spanish barley landraces with outstanding resistance to scald, the Rrs1 Rh4 locus was fine mapped including all known markers used in previous studies and closely linked markers were developed. Scald, caused by Rhynchosporium commune, is one of the most prevalent barley diseases worldwide. A search for new resistance sources revealed that Spanish landrace-derived lines SBCC145 and SBCC154 showed outstanding resistance to scald. They were crossed to susceptible cultivar Beatrix to create large DH-mapping populations of 522 and 416 DH lines that were scored for disease resistance in the greenhouse using two R. commune isolates. To ascertain the pattern of resistance, parents and reference barley lines with known scald resistance were phenotyped with a panel of differential R. commune isolates. Subpopulations were genotyped with the Illumina GoldenGate 1,536 SNP Assay and a large QTL in the centromeric region of chromosome 3H, known to harbour several scald resistance genes and/or alleles, was found in both populations. Five SNP markers closest to the QTL were converted into CAPS markers. These CAPS markers, together with informative SSR markers used in other scald studies, confirmed the presence of the Rrs1 locus. The panel of differential scald isolates indicated that the allele carried by both donors was Rrs1 Rh4 . The genetic distance between Rrs1 and its flanking markers was 1.2 cM (11_0010) proximally and 0.9 cM (11_0823) distally, which corresponds to a distance of just below 9 Mbp. The number and nature of scald resistance genes on chromosome 3H are discussed. The effective Rrs1 allele found and the closely linked markers developed are already useful tools for molecular breeding programs and provide a good step towards the identification of candidate genes.


Asunto(s)
Ascomicetos/patogenicidad , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Genética de Población , Hordeum/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Ascomicetos/clasificación , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Marcadores Genéticos/genética , Hordeum/inmunología , Hordeum/microbiología , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
11.
PLoS One ; 8(6): e67336, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826271

RESUMEN

Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Hordeum/genética , Hordeum/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Brachypodium/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta/genética , Hordeum/microbiología , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Sorghum/genética , España
12.
Theor Appl Genet ; 124(1): 49-62, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21901548

RESUMEN

The intervals containing two major quantitative trait loci (QTL) from a Spanish barley landrace conferring broad spectrum resistance to Blumeria graminis were subjected to marker saturation. First, all the available information on recently developed marker resources for barley was exploited. Then, a comparative genomic analysis of the QTL regions with other sequenced grass model species was performed. As a result of the first step, 32 new markers were added to the previous map and new flanking markers closer to both QTL were identified. Next, syntenic integration revealed that the barley target regions showed homology with regions on chromosome 6 of rice (Oryza sativa), chromosome 10 of Sorghum bicolor and chromosome 1 of Brachypodium distachyon. A nested insertion of ancestral syntenic blocks on Brachypodium chromosome 1 was confirmed. Based on sequence information of the most likely candidate orthologous genes, 23 new barley unigene-derived markers were developed and mapped within the barley target regions. The assessment of colinearity revealed an inversion on chromosome 7HL of barley compared to the other three grass species, and nearly perfect colinearity on chromosome 7HS. This two-step marker enrichment allowed for the refinement of the two QTL into much smaller intervals. Inspection of all predicted proteins for the barley unigenes identified within the QTL intervals did not reveal the presence of resistance gene candidates. This study demonstrates the usefulness of sequenced genomes for fine mapping and paves the way for the use of these two loci in barley breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Ascomicetos/fisiología , Mapeo Cromosómico , Marcadores Genéticos , Genómica , Hordeum/microbiología , Enfermedades de las Plantas/microbiología
13.
J Plant Physiol ; 165(10): 1120-4, 2008 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-18242775

RESUMEN

This study investigated the expression pattern of genes encoding for a basic PR-1 protein, a basic beta-1,3-glucanase, a peroxidase, and a sesquiterpene cyclase involved in defense responses in three pepper cultivars with different levels of resistance to Phytophthora capsici. All genes were up-regulated in infected stems of the pepper cultivars, with expression being detected 8h post-inoculation. mRNA levels of these genes increased markedly by 24h post-inoculation, and maximal induction levels were observed for the PR-1 and sesquiterpene cyclase genes. PR-1, peroxidase, and sesquiterpene genes were always expressed at higher levels in resistant cultivars than in the susceptible cultivar, although up-regulation was observed in both, suggesting that the differences between these pepper genotypes in susceptibility and resistance are a matter of the timing and magnitude of the defense response.


Asunto(s)
Capsicum/metabolismo , Capsicum/microbiología , Regulación de la Expresión Génica de las Plantas/fisiología , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Predisposición Genética a la Enfermedad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...