Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Clin Cancer Res ; 26(13): 3431-3442, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209571

RESUMEN

PURPOSE: Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. EXPERIMENTAL DESIGN: We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunologic effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. RESULTS: We show that multiplex gene editing of mouse lung organoids using the CRISPR-Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I IFN and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T-cell-mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunologic features of WEE1 inhibition are further enhanced by the addition of anti-PD-1 therapy. CONCLUSIONS: We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage-inducing therapies in the treatment of LSCC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Neoplasias Pulmonares/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Transgénicos , Organoides/efectos de los fármacos , Animales , Biomarcadores , Biomarcadores de Tumor , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Terapia Combinada , Edición Génica , Expresión Génica , Ingeniería Genética , Humanos , Inmunohistoquímica , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Cell ; 37(1): 37-54.e9, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31883968

RESUMEN

Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by T cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Inestabilidad Genómica , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Animales , Antineoplásicos/farmacología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Quimiocina CXCL9/metabolismo , Daño del ADN , Femenino , Humanos , Sistema Inmunológico , Inflamación , Interferón gamma/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Masculino , Ratones , Pruebas de Micronúcleos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Pirazoles/farmacología , Pirroles/farmacología , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
4.
Cancer Discov ; 10(2): 270-287, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31744829

RESUMEN

Despite substantial progress in lung cancer immunotherapy, the overall response rate in patients with KRAS-mutant lung adenocarcinoma (LUAD) remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of antitumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused single guide RNA library and performed an in vivo CRISPR screen in a Kras G12D/Trp53 -/- LUAD model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a deficiency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T-cell activation in combination with anti-PD-1. Our results provide a rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy. SIGNIFICANCE: Using an in vivo epigenetic CRISPR screen, we identified Asf1a as a critical regulator of LUAD sensitivity to anti-PD-1 therapy. Asf1a deficiency synergized with anti-PD-1 immunotherapy by promoting M1-like macrophage polarization and T-cell activation. Thus, we provide a new immunotherapeutic strategy for this subtype of patients with LUAD.See related commentary by Menzel and Black, p. 179.This article is highlighted in the In This Issue feature, p. 161.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Resistencia a Antineoplásicos/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Chaperonas Moleculares/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Animales , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epigénesis Genética/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Chaperonas Moleculares/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , RNA-Seq , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...