Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 461(7264): 636-9, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19794490

RESUMEN

Fault strength is a fundamental property of seismogenic zones, and its temporal changes can increase or decrease the likelihood of failure and the ultimate triggering of seismic events. Although changes in fault strength have been suggested to explain various phenomena, such as the remote triggering of seismicity, there has been no means of actually monitoring this important property in situ. Here we argue that approximately 20 years of observation (1987-2008) of the Parkfield area at the San Andreas fault have revealed a means of monitoring fault strength. We have identified two occasions where long-term changes in fault strength have been most probably induced remotely by large seismic events, namely the 2004 magnitude (M) 9.1 Sumatra-Andaman earthquake and the earlier 1992 M = 7.3 Landers earthquake. In both cases, the change possessed two manifestations: temporal variations in the properties of seismic scatterers-probably reflecting the stress-induced migration of fluids-and systematic temporal variations in the characteristics of repeating-earthquake sequences that are most consistent with changes in fault strength. In the case of the 1992 Landers earthquake, a period of reduced strength probably triggered the 1993 Parkfield aseismic transient as well as the accompanying cluster of four M > 4 earthquakes at Parkfield. The fault-strength changes produced by the distant 2004 Sumatra-Andaman earthquake are especially important, as they suggest that the very largest earthquakes may have a global influence on the strength of the Earth's fault systems. As such a perturbation would bring many fault zones closer to failure, it should lead to temporal clustering of global seismicity. This hypothesis seems to be supported by the unusually high number of M >or= 8 earthquakes occurring in the few years following the 2004 Sumatra-Andaman earthquake.

2.
Nature ; 454(7201): 204-8, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-18615082

RESUMEN

Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. One approach is to exploit the stress dependence of seismic wave velocity, and we have investigated this in an active source cross-well experiment at the San Andreas Fault Observatory at Depth (SAFOD) drill site. Here we show that stress changes are indeed measurable using this technique. Over a two-month period, we observed an excellent anti-correlation between changes in the time required for a shear wave to travel through the rock along a fixed pathway (a few microseconds) and variations in barometric pressure. We also observed two large excursions in the travel-time data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. The two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.

3.
Science ; 319(5859): 85-8, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-18174440

RESUMEN

Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

4.
Science ; 319(5861): 315-8, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18202286

RESUMEN

Although the morphologies of subducting slabs have been relatively well characterized, the character of the mantle flow field that accompanies subduction remains poorly understood. To analyze this pattern of flow, we compiled observations of seismic anisotropy, as manifested by shear wave splitting. Data from 13 subduction zones reveal systematic variations in both mantle-wedge and subslab anisotropy with the magnitude of trench migration velocity |V(t)|. These variations can be explained by flow along the strike of the trench induced by trench motion. This flow dominates beneath the slab, where its magnitude scales with |V(t)|. In the mantle wedge, this flow interacts with classical corner flow produced by the convergence velocity V(c); their relative influence is governed by the relative magnitude of |V(t)| and V(c).

5.
Nature ; 426(6966): 544-8, 2003 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-14654837

RESUMEN

The time-varying deformation field within a fault zone, particularly at depths where earthquakes occur, is important for understanding fault behaviour and its relation to earthquake occurrence. But detection of this temporal variation has been extremely difficult, although laboratory studies have long suggested that certain structural changes, such as the properties of crustal fractures, should be seismically detectable. Here we present evidence that such structural changes are indeed observable. In particular, we find a systematic temporal variation in the seismograms of repeat microearthquakes that occurred on the Parkfield segment of the San Andreas fault over the decade 1987-97. Our analysis reveals a change of the order of 10 m in the location of scatterers which plausibly lie within the fault zone at a depth of approximately 3 km. The motion of the scatterers is coincident, in space and time, with the onset of a well documented aseismic transient (deformation event). We speculate that this structural change is the result of a stress-induced redistribution of fluids in fluid-filled fractures caused by the transient event.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA