Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(5): 988-998, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415966

RESUMEN

Anticoagulant rodenticides (ARs) have caused widespread contamination and poisoning of predators and scavengers. The diagnosis of toxicity proceeds from evidence of hemorrhage, and subsequent detection of residues in liver. Many factors confound the assessment of AR poisoning, particularly exposure dose, timing and frequency of exposure, and individual and taxon-specific variables. There is a need, therefore, for better AR toxicity criteria. To respond, we compiled a database of second-generation anticoagulant rodenticide (SGAR) residues in liver and postmortem evaluations of 951 terrestrial raptor carcasses from Canada and the United States, 1989 to 2021. We developed mixed-effects logistic regression models to produce specific probability curves of the toxicity of ∑SGARs at the taxonomic level of the family, and separately for three SGARs registered in North America, brodifacoum, bromadiolone, and difethialone. The ∑SGAR threshold concentrations for diagnosis of coagulopathy at 0.20 probability of risk were highest for strigid owls (15 ng g-1) lower and relatively similar for accipitrid hawks and eagles (8.2 ng g-1) and falcons (7.9 ng g-1), and much lower for tytonid barn owls (0.32 ng g-1). These values are lower than those we found previously, due to compilation and use of a larger database with a mix of species and source locations, and also to refinements in the statistical methods. Our presentation of results on the family taxonomic level should aid in the global applicability of the numbers. We also collated a subset of 440 single-compound exposure events and determined the probability of SGAR-poisoning symptoms as a function of SGAR concentration, which we then used to estimate relative SGAR toxicity and toxic equivalence factors: difethialone, 1, brodifacoum, 0.8, and bromadiolone, 0.5. Environ Toxicol Chem 2024;43:988-998. © 2024 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Asunto(s)
Anticoagulantes , Rapaces , Rodenticidas , Rodenticidas/toxicidad , Animales , Anticoagulantes/toxicidad , Anticoagulantes/envenenamiento , 4-Hidroxicumarinas/envenenamiento , 4-Hidroxicumarinas/toxicidad , Canadá , Monitoreo del Ambiente
2.
Environ Toxicol Chem ; 41(8): 1903-1917, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35678209

RESUMEN

As the dominant means for control of pest rodent populations globally, anticoagulant rodenticides (ARs), particularly the second-generation compounds (SGARs), have widely contaminated nontarget organisms. We present data on hepatic residues of ARs in 741 raptorial birds found dead or brought into rehabilitation centers in British Columbia, Canada, over a 30-year period from 1988 to 2018. Exposure varied by species, by proximity to residential areas, and over time, with at least one SGAR residue detected in 74% of individuals and multiple residues in 50% of individuals. By comparison, we detected first-generation compounds in <5% of the raptors. Highest rates of exposure were in barred owls (Strix varia), 96%, and great horned owls (Bubo virginianus), 81%, species with diverse diets, including rats (Rattus norvegicus and Rattus rattus), and inhabiting suburban and intensive agricultural habitats. Barn owls (Tyto alba), mainly a vole (Microtus) eater, had a lower incidence of exposure of 65%. Putatively, bird-eating raptors also had a relatively high incidence of exposure, with 75% of Cooper's hawks (Accipiter cooperii) and 60% of sharp-shinned hawks (Accipiter striatus) exposed. Concentrations of SGARs varied greatly, for example, in barred owls, the geometric mean ∑SGAR = 0.13, ranging from <0.005 to 1.81 µg/g wet weight (n = 208). Barred owls had significantly higher ∑SGAR concentrations than all other species, driven by significantly higher bromadiolone concentrations, which was predicted by the proportion of residential land within their home ranges. Preliminary indications that risk mitigation measures implemented in 2013 are having an influence on exposure include a decrease in mean concentrations of brodifacoum and difethialone in barred and great horned owls and an increase in bromodialone around that inflection point. Environ Toxicol Chem 2022;41:1903-1917. © 2022 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Asunto(s)
Rapaces , Rodenticidas , Estrigiformes , Animales , Anticoagulantes , Colombia Británica , Femenino , Ratas , Rodenticidas/análisis
3.
Environ Pollut ; 279: 116928, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33774363

RESUMEN

Seabirds are wide-ranging organisms often used to track marine pollution, yet the effect of migration on exposure over the annual cycle is often unclear. We used solar geolocation loggers and stable isotope analysis to study the effects of post breeding dispersal and diet on persistent organic pollutant (POP) and mercury (Hg) burdens in rhinoceros auklets, Cerorhinca monocerata, breeding on islands along the Pacific Coast of Canada. Hg and four classes of POPs were measured in auklet eggs: organochlorine insecticides (OCs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluoralkyl substances (PFASs). Stable isotope values of adult breast feathers grown during winter were used in conjunction with geolocation to elucidate adult wintering latitude. Wintering latitude was the most consistent and significant predictor of some POP and of Hg concentrations in eggs. The magnitude and pattern of exposure varied by contaminant, with ∑PCBs, ∑PBDEs and DDE decreasing with wintering latitude, and mirex, perfluoro-n-tridecanoic acid, and Hg increasing with latitude. We suggest that concentrations of these contaminants in rhinoceros auklet eggs are influenced by variation in uptake at adult wintering locations related to anthropogenic inputs and oceanic and atmospheric transport.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Animales , Canadá , Monitoreo del Ambiente , Éteres Difenilos Halogenados , Islas , Perisodáctilos , Contaminantes Orgánicos Persistentes
4.
Environ Toxicol Chem ; 37(2): 411-426, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29092091

RESUMEN

Run-of-river dams produce lower greenhouse gas emissions than large hydropower projects, but there is a paucity of research on their potential ecotoxicological impacts through disruption of natural flow regimes. We used stable isotopes (δ13 C, δ15 N, δ34 S) to reconstruct diet and trace methylmercury in a predatory river-resident passerine, the American dipper (Cinclus mexicanus), at 7 regulated and 6 free-flowing mountain streams in coastal British Columbia, Canada. Assimilated diets were comparable among regulated and unregulated streams, dominated by benthic macroinvertebrates and resident freshwater fish, with negligible contributions from anadromous Pacific salmon. Although invertebrates at unregulated streams were isotopically similar along their gradient, dippers and invertebrates sampled below dams on regulated streams had 34 S-depleted tissues, suggesting increased activity of sulfate-reducing bacteria and more Hg methylation below the dams. Mercury concentrations in dipper blood (417.6 ± 74.1 standard error [SE] ng/g wet wt at regulated streams, 340.7 ± 42.7 SE ng/g wet wt at unregulated streams) and feathers (1564 .6 ± 367.2 SE ng/g dry wt regulated, 1149.0 ± 152.1 SE ng/g dry wt unregulated), however, were not significantly different between stream types. Relative to other passerines across western North America, dippers in these densely forested mountain streams experienced high mercury exposure; and one recently regulated stream supported dippers with mercury concentrations of potential toxicity concern (up to 8459.5 ng/g dry wt in feathers and 1824.6 ng/g wet wt in whole blood). Elevated mercury in dippers is likely attributable to the birds' relatively high trophic position and high regional inorganic mercury deposition; however, biogeochemical conditions in reservoirs of some regulated streams may be contributing to methylmercury production. Environ Toxicol Chem 2018;37:411-426. © 2017 SETAC.


Asunto(s)
Dieta , Exposición a Riesgos Ambientales , Mercurio/análisis , Passeriformes/fisiología , Reología , Ríos/química , Animales , Bacterias/metabolismo , Colombia Británica , Ecosistema , Monitoreo del Ambiente , Plumas/química , Peces , Cadena Alimentaria , Geografía , Invertebrados/fisiología , Marcaje Isotópico , Metilación , Compuestos de Metilmercurio/análisis , Passeriformes/sangre , Conducta Predatoria , Sulfatos/metabolismo , Estados Unidos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...