Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36673207

RESUMEN

Slope Entropy (SlpEn) is a very recently proposed entropy calculation method. It is based on the differences between consecutive values in a time series and two new input thresholds to assign a symbol to each resulting difference interval. As the histogram normalisation value, SlpEn uses the actual number of unique patterns found instead of the theoretically expected value. This maximises the information captured by the method but, as a consequence, SlpEn results do not usually fall within the classical [0,1] interval. Although this interval is not necessary at all for time series classification purposes, it is a convenient and common reference framework when entropy analyses take place. This paper describes a method to keep SlpEn results within this interval, and improves the interpretability and comparability of this measure in a similar way as for other methods. It is based on a max-min normalisation scheme, described in two steps. First, an analytic normalisation is proposed using known but very conservative bounds. Afterwards, these bounds are refined using heuristics about the behaviour of the number of patterns found in deterministic and random time series. The results confirm the suitability of the approach proposed, using a mixture of the two methods.

2.
Sensors (Basel) ; 21(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198793

RESUMEN

Wireless sensor networks (WSNs) play a key role in the ecosystem of the Industrial Internet of Things (IIoT) and the definition of today's Industry 4.0. These WSNs have the ability to sensor large amounts of data, thanks to their easy scalability. WSNs allow the deployment of a large number of self-configuring nodes and the ability to automatically reorganize in case of any change in the topology. This huge sensorization capacity, together with its interoperability with IP-based networks, allows the systems of Industry 4.0 to be equipped with a powerful tool with which to digitalize a huge amount of variables in the different industrial processes. The IEEE 802.15.4e standard, together with the access mechanism to the Time Slotted Channel Hopping medium (TSCH) and the dynamic Routing Protocol for Low-Power and Lossy Networks (RPL), allow deployment of networks with the high levels of robustness and reliability necessary in industrial scenarios. However, these configurations have some disadvantages in the deployment and synchronization phases of the networks, since the time it takes to synchronize the nodes is penalized compared to other solutions in which access to the medium is done randomly and without channel hopping. This article proposes an analytical model to characterize the behavior of this type of network, based on TSCH and RPL during the phases of deployment along with synchronization and connection to the RPL network. Through this model, validated by simulation and real tests, it is possible to parameterize different configurations of a WSN network based on TSCH and RPL.

3.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557295

RESUMEN

IWSNs (Industrial Wireless Sensor Networks) have become the next step in the evolution of WSN (Wireless Sensor Networks) due to the nature and demands of modern industry. With this type of network, flexible and scalable architectures can be created that simultaneously support traffic sources with different characteristics. Due to the great diversity of application scenarios, there is a need to implement additional capabilities that can guarantee an adequate level of reliability and that can adapt to the dynamic behavior of the applications in use. The use of SDNs (Software Defined Networks) extends the possibilities of control over the network and enables its deployment at an industrial level. The signaling traffic exchanged between nodes and controller is heavy and must occupy the same channel as the data traffic. This difficulty can be overcome with the segmentation of the traffic into flows, and correct scheduling at the MAC (Medium Access Control) level, known as slices. This article proposes the integration in the SDN controller of a traffic manager, a routing process in charge of assigning different routes according to the different flows, as well as the introduction of the Time Slotted Channel Hopping (TSCH) Scheduler. In addition, the TSCH (Time Slotted Channel Hopping) is incorporated in the SDN-WISE framework (Software Defined Networking solution for Wireless Sensor Networks), and this protocol has been modified to send the TSCH schedule. These elements are jointly responsible for scheduling and segmenting the traffic that will be sent to the nodes through a single packet from the controller and its performance has been evaluated through simulation and a testbed. The results obtained show how flexibility, adaptability, and determinism increase thanks to the joint use of the routing process and the TSCH Scheduler, which makes it possible to create a slicing by flows, which have different quality of service requirements. This in turn helps guarantee their QoS characteristics, increase the PDR (Packet Delivery Ratio) for the flow with the highest priority, maintain the DMR (Deadline Miss Ratio), and increase the network lifetime.

4.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143389

RESUMEN

Today, a wide range of developments and paradigms require the use of embedded systems characterized by restrictions on their computing capacity, consumption, cost, and network connection. The evolution of the Internet of Things (IoT) towards Industrial IoT (IIoT) or the Internet of Multimedia Things (IoMT), its impact within the 4.0 industry, the evolution of cloud computing towards edge or fog computing, also called near-sensor computing, or the increase in the use of embedded vision, are current examples of this trend. One of the most common methods of reducing energy consumption is the use of processor frequency scaling, based on a particular policy. The algorithms to define this policy are intended to obtain good responses to the workloads that occur in smarthphones. There has been no study that allows a correct definition of these algorithms for workloads such as those expected in the above scenarios. This paper presents a method to determine the operating parameters of the dynamic governor algorithm called Interactive, which offers significant improvements in power consumption, without reducing the performance of the application. These improvements depend on the load that the system has to support, so the results are evaluated against three different loads, from higher to lower, showing improvements ranging from 62% to 26%.

5.
Sensors (Basel) ; 19(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554211

RESUMEN

The Industrial Internet of Things (IIoT) is having an ever greater impact on industrial processes and the manufacturing sector, due the capabilities of massive data collection and interoperability with plant processes, key elements that are focused on the implementation of Industry 4.0. Wireless Sensor Networks (WSN) are one of the enabling technologies of the IIoT, due its self-configuration and self-repair capabilities to deploy ad-hoc networks. High levels of robustness and reliability, which are necessary in industrial environments, can be achieved by using the Time-Slotted Channel Hopping (TSCH) medium access the mechanism of the IEEE 802.15.4e protocol, penalizing other features, such as network connection and formation times, given that a new node does not know, a priori, the scheduling used by the network. This article proposes a new beacon advertising approach for a fast synchronization for networks under the TSCH-Medium Access Control (MAC) layer and Routing Protocol for Low-Power and Lossy Networks (RPL). This new method makes it possible to speed up the connection times of new nodes in an opportunistic way, while reducing the consumption and advertising traffic generated by the network.

6.
Sensors (Basel) ; 18(10)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347821

RESUMEN

Wireless Sensor Networks have become a key enabler for Industrial Internet of Things (IoT) applications; however, to adapt to the derived robust communication requirements, deterministic and scheduled medium access should be used, along with other features, such as channel hopping and frequency diversity. Implementing these mechanisms requires a correct synchronization of all devices in the network, a stage in deployment that can lead to non-operational networks. The present article presents an analysis of such situations and possible solutions, including the common current approaches and recommendations, and proposes a new beacon advertising method based on a specific Trickle Timer for the Medium Access Control (MAC) Time-Slotted Channel Hopping (TSCH) layer, decoupling from the timers in the network and routing layers. With this solution, improvements in connection success, time to join, and energy consumption can be obtained for the widely extended IEEE802.15.4e standard.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...