Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(6): e0059423, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37199672

RESUMEN

Extracellular vesicles are small (approximately 50 to 250 nm in diameter), membrane-bound structures that are released by cells into their surrounding environment. Heterogeneous populations of vesicles are abundant in the global oceans, and they likely play a number of ecological roles in these microbially dominated ecosystems. Here, we examine how vesicle production and size vary among different strains of cultivated marine microbes as well as explore the degree to which this is influenced by key environmental variables. We show that both vesicle production rates and vesicle sizes significantly differ among cultures of marine Proteobacteria, Cyanobacteria, and Bacteroidetes. Further, these properties vary within individual strains as a function of differences in environmental conditions, such as nutrients, temperature, and light irradiance. Thus, both community composition and the local abiotic environment are expected to modulate the production and standing stock of vesicles in the oceans. Examining samples from the oligotrophic North Pacific Gyre, we show depth-dependent changes in the abundance of vesicle-like particles in the upper water column in a manner that is broadly consistent with culture observations: the highest vesicle abundances are found near the surface, where the light irradiances and the temperatures are the greatest, and they then decrease with depth. This work represents the beginnings of a quantitative framework for describing extracellular vesicle dynamics in the oceans, which is essential as we begin to incorporate vesicles into our ecological and biogeochemical understanding of marine ecosystems. IMPORTANCE Bacteria release extracellular vesicles that contain a wide variety of cellular compounds, including lipids, proteins, nucleic acids, and small molecules, into their surrounding environment. These structures are found in diverse microbial habitats, including the oceans, where their distributions vary throughout the water column and likely affect their functional impacts within microbial ecosystems. Using a quantitative analysis of marine microbial cultures, we show that bacterial vesicle production in the oceans is shaped by a combination of biotic and abiotic factors. Different marine taxa release vesicles at rates that vary across an order of magnitude, and vesicle production changes dynamically as a function of environmental conditions. These findings represent a step forward in our understanding of bacterial extracellular vesicle production dynamics and provide a basis for the quantitative exploration of the factors that shape vesicle dynamics in natural ecosystems.


Asunto(s)
Cianobacterias , Vesículas Extracelulares , Agua de Mar/microbiología , Ecosistema , Agua
2.
Ecol Evol ; 9(24): 14114-14129, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31938507

RESUMEN

The use of genetics in recent years has brought to light the need to reevaluate the classification of many gorgonian octocorals. This study focuses on two Leptogorgia species-Leptogorgia virgulata and Leptogorgia hebes-from the northwestern Gulf of Mexico (GOM). We target complete mitochondrial genomes and mtMutS sequences, and integrate this data with previous genetic research of gorgonian corals to resolve phylogenetic relationships and estimate divergence times. This study contributes the first complete mitochondrial genomes for L. ptogorgia virgulata and L. hebes. Our resulting phylogenies stress the need to redefine the taxonomy of the genus Leptogorgia in its entirety. The fossil-calibrated divergence times for Eastern Pacific and Western Atlantic Leptogorgia species based on complete mitochondrial genomes shows that the use of multiple genes results in estimates of more recent speciation events than previous research based on single genes. These more recent divergence times are in agreement with geologic data pertaining to the formation of the Isthmus of Panama.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...