Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Comput Struct Biotechnol J ; 23: 43-51, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125298

RESUMEN

Background: Bevacizumab is used in the treatment of radiation necrosis (RN), which is a debilitating toxicity following head and neck radiotherapy. However, there is no biomarker to predict if a patient would respond to bevacizumab. Purpose: We aimed to develop a cluster-based radiomics approach to characterize the spatial heterogeneity of RN and map their responses to bevacizumab. Methods: 118 consecutive nasopharyngeal carcinoma patients diagnosed with RN were enrolled. We divided 152 lesions from the patients into 101 for training, and 51 for validation. We extracted voxel-level radiomics features from each lesion segmented on T1-weighted+contrast and T2 FLAIR sequences of pre- and post-bevacizumab magnetic resonance images, followed by a three-step analysis involving individual- and population-level clustering, before delta-radiomics to derive five radiomics clusters within the lesions. We tested the association of each cluster with response to bevacizumab and developed a clinico-radiomics model using clinical predictors and cluster-specific features. Results: 71 (70.3%) and 34 (66.7%) lesions had responded to bevacizumab in the training and validation datasets, respectively. Two radiomics clusters were spatially mapped to the edema region, and the volume changes were significantly associated with bevacizumab response (OR:11.12 [95% CI: 2.54-73.47], P = 0.004; and 1.63[1.07-2.78], P = 0.042). The combined clinico-radiomics model based on textural features extracted from the most significant cluster improved the prediction of bevacizumab response, compared with a clinical-only model (AUC:0.755 [0.645-0.865] to 0.852 [0.764-0.940], training; 0.708 [0.554-0.861] to 0.816 [0.699-0.933], validation). Conclusion: Our radiomics approach yielded intralesional resolution, enabling a more refined feature selection for predicting bevacizumab efficacy in the treatment of RN.

3.
Radiother Oncol ; 176: 138-148, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191651

RESUMEN

BACKGROUND AND PURPOSE: We aimed to the genetic components and susceptibility variants associated with acute radiation-induced toxicities (RITs) in patients with head and neck cancer (HNC). MATERIALS AND METHODS: We performed the largest meta-GWAS of seven European cohorts (n = 4,042). Patients were scored weekly during radiotherapy for acute RITs including dysphagia, mucositis, and xerostomia. We analyzed the effect of variants on the average burden (measured as area under curve, AUC) per each RIT, and standardized total average acute toxicity (STATacute) score using a multivariate linear regression. We tested suggestive variants (p < 1.0x10-5) in discovery set (three cohorts; n = 2,640) in a replication set (four cohorts; n = 1,402). We meta-analysed all cohorts to calculate RITs specific SNP-based heritability, and effect of polygenic risk scores (PRSs), and genetic correlations among RITS. RESULTS: From 393 suggestive SNPs identified in discovery set; 37 were nominally significant (preplication < 0.05) in replication set, but none reached genome-wide significance (pcombined < 5 × 10-8). In-silico functional analyses identified "3'-5'-exoribonuclease activity" (FDR = 1.6e-10) for dysphagia, "inositol phosphate-mediated signalling" for mucositis (FDR = 2.20e-09), and "drug catabolic process" for STATacute (FDR = 3.57e-12) as the most enriched pathways by the RIT specific suggestive genes. The SNP-based heritability (±standard error) was 29 ± 0.08 % for dysphagia, 9 ± 0.12 % (mucositis) and 27 ± 0.09 % (STATacute). Positive genetic correlation was rg = 0.65 (p = 0.048) between dysphagia and STATacute. PRSs explained limited variation of dysphagia (3 %), mucositis (2.5 %), and STATacute (0.4 %). CONCLUSION: In HNC patients, acute RITs are modestly heritable, sharing 10 % genetic susceptibility, when PRS explains < 3 % of their variance. We identified numerus suggestive SNPs, which remain to be replicated in larger studies.


Asunto(s)
Trastornos de Deglución , Neoplasias de Cabeza y Cuello , Mucositis , Traumatismos por Radiación , Humanos , Estudio de Asociación del Genoma Completo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/complicaciones , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
5.
Prostate Cancer Prostatic Dis ; 25(4): 741-748, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091711

RESUMEN

OBJECTIVE: Treatment efficacy of androgen deprivation therapy with radical prostatectomy for intermediate- to high-risk prostate cancer is less well-studied. The NEAR trial is a single-arm, phase II investigation of neoadjuvant apalutamide monotherapy and radical prostatectomy (RP) in the treatment of D'Amico intermediate- and high-risk prostate cancer (NCT03124433). MATERIALS AND METHODS: Patients with histologically-proven, D'Amico intermediate- to high-risk prostate adenocarcinoma received apalutamide 240 mg once-daily for 12 weeks followed by RP + /-lymphadenectomy. Primary outcome was pathological complete response (pCR) rate. Secondary outcomes included rate of biochemical response (defined by PSA < 0.03 ng/mL at week 24 from starting apalutamide without subsequent PSA relapse), treatment-related adverse events, and RP complication rates. Correlative biomarker analyses were performed to examine for molecular predictors of treatment responses. RESULTS: From 2017 to 2019, 30 patients were recruited, of which 20 and 10 were high and intermediate risk, respectively; 25 completed treatment as per-protocol. We did not observe any pCR on trial; median reduction of cancer burden was 41.7% (IQR: 33.3%-60.0%). 18 out of 25 patients were classified as having a biochemical response (4 did not achieve PSA of <0.03 ng/mL at week 24 and 3 developed PSA relapse subsequently). Dry skin (N = 16; 53.3%), fatigue (N = 10; 33.3%) and skin rash (N = 9; 30.0%) were the most common adverse events, and there was no major peri-operative complication. We observed an association between tumours of low androgen receptor activity and PAM50 basal status with biochemical non-responders, albeit these molecular phenotypes were not associated with pathological response. CONCLUSIONS: A 12-week course of neoadjuvant apalutamide prior to RP did not meet the primary endpoint of pCR in this trial. Tumours with low androgen receptor activity or of the PAM50 basal subtype may have a reduced response to apalutamide.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Terapia Neoadyuvante/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/uso terapéutico , Receptores Androgénicos , Recurrencia Local de Neoplasia/cirugía , Prostatectomía/métodos
6.
Ther Adv Med Oncol ; 13: 17588359211052417, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721672

RESUMEN

BACKGROUND: The objective of this study was to construct a risk classification system integrating cell-free Epstein-Barr virus (cfEBV) DNA with T- and N- categories for better prognostication in nasopharyngeal carcinoma (NPC). METHODS: Clinical records of 10,149 biopsy-proven, non-metastatic NPC were identified from two cancer centers; this comprised a training (N = 9,259) and two validation cohorts (N = 890; including one randomized controlled phase 3 trial cohort). Adjusted hazard ratio (AHR) method using a two-tiered stratification by cfEBV DNA and TN-categories was applied to generate the risk model. Primary clinical endpoint was overall survival (OS). Performances of the models were compared against American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) 8th edition TNM-stage classification and two published recursive partitioning analysis (RPA) models, and were validated in the validation cohorts. RESULTS: We chose a cfEBV DNA cutoff of ⩾2,000 copies for optimal risk discretization of OS, disease-free survival (DFS) and distant metastasis-free survival (DMFS) in the training cohort. AHR modeling method divided NPC into six risk groups with significantly disparate survival (p < 0.001 for all): AHR1, T1N0; AHR2A, T1N1/T2-3N0 cfEBV DNA < 2,000 (EBVlow); AHR2B, T1N1/T2-3N0 cfEBV DNA ⩾ 2,000 (EBVhigh) and T1-2N2/T2-3N1 EBVlow; AHR3, T1-2N2/T2-3N1 EBVhigh and T3N2/T4N0 EBVlow; AHR4, T3N2/T4 N0-1 EBVhigh and T1-3N3/T4N1-3 EBVlow; AHR5, T1-3N3/T4 N2-3 EBVhigh. Our AHR model outperformed the published RPA models and TNM stage with better hazard consistency (1.35 versus 3.98-12.67), hazard discrimination (5.29 versus 6.69-13.35), explained variation (0.248 versus 0.164-0.225), balance (0.385 versus 0.438-0.749) and C-index (0.707 versus 0.662-0.700). In addition, our AHR model was superior to the TNM stage for risk stratification of OS in two validation cohorts (p < 0.001 for both). CONCLUSION: Herein, we developed and validated a risk classification system that combines the AJCC/UICC 8th edition TN-stage classification and cfEBV DNA for non-metastatic NPC. Our new clinicomolecular model provides improved OS prediction over the current staging system.

7.
Ther Adv Med Oncol ; 12: 1758835920970050, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240398

RESUMEN

BACKGROUND: Lactate dehydrogenase (LDH) is a known prognostic biomarker for the endemic variant of nasopharyngeal carcinoma (NPC). Here, we investigate whether serial changes in LDH level between chemotherapy (CT) cycles are associated with tumour response to CT. METHODS: Patients with biopsy-proven, recurrent or treatment-naïve metastatic NPC (mNPC) were recruited. All patients had received at least two cycles of platinum-based doublet or triplet CT, with serial assessment of LDH prior to every cycle of chemotherapy (CT1-6). Patients harbouring conditions that affect LDH levels (IU/L) were excluded. Tumour response was assessed after every two cycles of CT by RECIST v1.1. RESULTS: A total of 158 patients were analysed, including 77 with recurrent and 81 with treatment-naïve mNPC. High pre-CT LDH was associated with an inferior overall survival [hazard ratio 1.93 for ⩾240 versus <240 (1.34-2.77), p < 0.001], which is consistent with published literature. We found that both absolute LDH levels and LDH ratios (LDHCTn: LDHCTn-1) were associated with tumour response [partial response versus progressive disease: median value across CT1-6 = 168-190 versus 222-398 (absolute); 0.738-0.988 versus 1.039-1.406 (ratio)], albeit LDH ratio had a tighter variance between patients. Finally, we showed that an LDH ratio cut-off of 1.0 at CT1, CT3 and CT5 was predictive of progressive disease at CT2, CT4, CT6 [area under the curve of 0.73 (0.65-0.80)]. CONCLUSION: Herein, we characterised the longitudinal variation of LDH in response to CT in mNPC. Our findings suggest the potential utility of interval LDH ratio to predict subsequent tumour response to CT.

8.
Proc Natl Acad Sci U S A ; 116(28): 13958-13963, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243148

RESUMEN

In the disease familial amyloidosis, Finnish type (FAF), also known as AGel amyloidosis (AGel), the mechanism by which point mutations in the calcium-regulated actin-severing protein gelsolin lead to furin cleavage is not understood in the intact protein. Here, we provide a structural and biochemical characterization of the FAF variants. X-ray crystallography structures of the FAF mutant gelsolins demonstrate that the mutations do not significantly disrupt the calcium-free conformations of gelsolin. Small-angle X-ray-scattering (SAXS) studies indicate that the FAF calcium-binding site mutants are slower to activate, whereas G167R is as efficient as the wild type. Actin-regulating studies of the gelsolins at the furin cleavage pH (6.5) show that the mutant gelsolins are functional, suggesting that they also adopt relatively normal active conformations. Deletion of gelsolin domains leads to sensitization to furin cleavage, and nanobody-binding protects against furin cleavage. These data indicate instability in the second domain of gelsolin (G2), since loss or gain of G2-stabilizing interactions impacts the efficiency of cleavage by furin. To demonstrate this principle, we engineered non-FAF mutations in G3 that disrupt the G2-G3 interface in the calcium-activated structure. These mutants led to increased furin cleavage. We carried out molecular dynamics (MD) simulations on the FAF and non-FAF mutant G2-G3 fragments of gelsolin. All mutants showed an increase in the distance between the center of masses of the 2 domains (G2 and G3). Since G3 covers the furin cleavage site on G2 in calcium-activated gelsolin, this suggests that destabilization of this interface is a critical step in cleavage.


Asunto(s)
Amiloidosis/genética , Distrofias Hereditarias de la Córnea/genética , Furina/química , Gelsolina/química , Conformación Proteica , Actinas/química , Actinas/genética , Amiloidosis/patología , Sitios de Unión/genética , Calcio/química , Distrofias Hereditarias de la Córnea/patología , Cristalografía por Rayos X , Furina/genética , Gelsolina/genética , Gelsolina/ultraestructura , Predisposición Genética a la Enfermedad , Humanos , Simulación de Dinámica Molecular , Mutación/genética , Unión Proteica/genética , Dominios Proteicos/genética
9.
Nat Commun ; 10(1): 1408, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926818

RESUMEN

Dengue (DENV) and Zika (ZIKV) viruses are clinically important members of the Flaviviridae family with an 11 kb positive strand RNA genome that folds to enable virus function. Here, we perform structure and interaction mapping on four DENV and ZIKV strains inside virions and in infected cells. Comparative analysis of SHAPE reactivities across serotypes nominates potentially functional regions that are highly structured, conserved, and contain low synonymous mutation rates. Interaction mapping by SPLASH identifies many pair-wise interactions, 40% of which form alternative structures, suggesting extensive structural heterogeneity. Analysis of shared interactions between serotypes reveals a conserved macro-organization whereby interactions can be preserved at physical locations beyond sequence identities. We further observe that longer-range interactions are preferentially disrupted inside cells, and show the importance of new interactions in virus fitness. These findings deepen our understanding of Flavivirus genome organization and serve as a resource for designing therapeutics in targeting RNA viruses.


Asunto(s)
Mapeo Cromosómico , Virus del Dengue/química , Virus del Dengue/genética , Virus Zika/química , Virus Zika/genética , Animales , Secuencia de Bases , Línea Celular , Secuencia Conservada , Genoma Viral , Humanos , Ratones , Modelos Moleculares , Mutación/genética , Ácidos Nicotínicos , ARN Viral/química , Virión/genética
10.
Structure ; 27(2): 253-267.e8, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30471923

RESUMEN

Dengue virus (DENV) particles are released from cells in different maturation states. Fully immature DENV (immDENV) is generally non-infectious, but can become infectious when complexed with anti-precursor membrane (prM) protein antibodies. It is unknown how anti-prM antibody-coated particles can undergo membrane fusion since the prM caps the envelope (E) protein fusion loop. Here, we determined cryoelectron microscopy (cryo-EM) maps of the immDENV:anti-prM complex at different pH values, mimicking the extracellular (pH 8.0) or endosomal (pH 5.0) environments. At pH 5.0, there are two structural classes with fewer antibodies bound than at pH 8.0. These classes may represent different maturation states. Molecular simulations, together with the measured high-affinity pr:antibody interaction (versus the weak pr:E interaction) and also the low pH cryo-EM structures, suggest how antibody:pr complex can dislodge from the E protein at low pH. This exposes the E protein fusion loop enhancing virus interaction with endosomes.


Asunto(s)
Virus del Dengue/fisiología , Endosomas/virología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Línea Celular , Microscopía por Crioelectrón , Virus del Dengue/química , Virus del Dengue/inmunología , Endosomas/química , Endosomas/inmunología , Humanos , Concentración de Iones de Hidrógeno , Fragmentos Fab de Inmunoglobulinas/química , Modelos Moleculares , Células THP-1 , Acoplamiento Viral
11.
PLoS One ; 12(6): e0178381, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28570566

RESUMEN

The Hippo signaling pathway, which is implicated in the regulation of organ size, has emerged as a potential target for the development of cancer therapeutics. YAP, TAZ (transcription co-activators) and TEAD (transcription factor) are the downstream transcriptional machinery and effectors of the pathway. Formation of the YAP/TAZ-TEAD complex leads to transcription of growth-promoting genes. Conversely, disrupting the interactions of the complex decreases cell proliferation. Herein, we screened a 1000-member fragment library using Thermal Shift Assay and identified a hit fragment. We confirmed its binding at the YAP/TAZ-TEAD interface by X-ray crystallography, and showed that it occupies the same hydrophobic pocket as a conserved phenylalanine of YAP/TAZ. This hit fragment serves as a scaffold for the development of compounds that have the potential to disrupt YAP/TAZ-TEAD interactions. Structure-activity relationship studies and computational modeling were also carried out to identify more potent compounds that may bind at this validated druggable binding site.


Asunto(s)
Simulación por Computador , Factores de Transcripción/metabolismo , Animales , Calorimetría , Cristalografía por Rayos X , Humanos , Ligandos , Ratones , Unión Proteica , Relación Estructura-Actividad , Factores de Transcripción/química
12.
J Invest Dermatol ; 137(9): 1914-1923, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28526297

RESUMEN

The terminal domains of suprabasal keratins of the skin epithelium are very resistant to evidence-based structural analysis because of their inherent flexibility and lack of predictable structure. We present a model for the structure and interactions of the head and tail domains of epidermal keratins 1 and 10, based on all-atom 3D simulations of keratin primary amino acid sequences, and tyrosine phosphorylation predictions, extracted from published databases. We observed that keratin 1 and 10 end domains are likely to form a tetrameric terminal domain complex incorporating a reversibly extendable region potentially acting as a molecular spring. This structure is formed by intermolecular stacking of aromatic residues, which would spatially constrain the keratin 1/keratin 10 end domains to allow filament compaction and bundling, whilst also retaining extensibility to ensure flexibility of the keratin filament network in the differentiating epidermis. The tetrameric terminal domain complex model may also help to elucidate the effects of mutations in the end domains of suprabasal keratins and so contribute to understanding of the mechanisms leading to keratinopathies such as striate palmoplantar keratoderma, as reported in this study.


Asunto(s)
Imagenología Tridimensional , Queratina-10/genética , Queratina-1/genética , Queratodermia Palmoplantar/genética , Células Cultivadas , ADN/análisis , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Queratodermia Palmoplantar/patología , Mutación , Fenotipo , Sensibilidad y Especificidad
13.
Proteins ; 85(8): 1493-1506, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28425639

RESUMEN

Mdm2 and MdmX share high structural similarity in their N-terminal domains, yet dual inhibitors are challenging to design due to differences in the conformations of the binding pockets, and notably of the proposed gatekeeper residue, Y100/99. Analysis of crystal structures and molecular dynamics (MD) simulations of complexes of Mdm2 and MdmX resulted in the identification of a water molecule with a long residence time that appears to be modulated by the conformation of Y100/99. These observations lead us to speculate that dual inhibitors either (i) stabilize both Mdm2 and MdmX with Y100/99 in the open conformation typically seen in complexes of Mdm2 with p53, or (ii) the dual inhibitors are agnostic to the conformation of Y100/99. The recently developed potent dual inhibitory stapled peptide Atsp7041 appears to be agnostic to the conformation of the gatekeeper residue. Proteins 2017; 85:1493-1506. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Proteínas Nucleares/química , Péptidos Cíclicos/química , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas/química , Tirosina/química , Agua/química , Sitios de Unión , Proteínas de Ciclo Celular , Diseño de Fármacos , Humanos , Cinética , Ligandos , Simulación de Dinámica Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Electricidad Estática , Relación Estructura-Actividad , Termodinámica , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Tirosina/metabolismo , Agua/metabolismo
14.
Nucleic Acids Res ; 45(1): e5, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27634929

RESUMEN

RNA molecules are attractive therapeutic targets because non-coding RNA molecules have increasingly been found to play key regulatory roles in the cell. Comparing and classifying RNA 3D structures yields unique insights into RNA evolution and function. With the rapid increase in the number of atomic-resolution RNA structures, it is crucial to have effective tools to classify RNA structures and to investigate them for structural similarities at different resolutions. We previously developed the algorithm CLICK to superimpose a pair of protein 3D structures by clique matching and 3D least squares fitting. In this study, we extend and optimize the CLICK algorithm to superimpose pairs of RNA 3D structures and RNA-protein complexes, independent of the associated topologies. Benchmarking Rclick on four different datasets showed that it is either comparable to or better than other structural alignment methods in terms of the extent of structural overlaps. Rclick also recognizes conformational changes between RNA structures and produces complementary alignments to maximize the extent of detectable similarity. Applying Rclick to study Ribonuclease III protein correctly aligned the RNA binding sites of RNAse III with its substrate. Rclick can be further extended to identify ligand-binding pockets in RNA. A web server is developed at http://mspc.bii.a-star.edu.sg/minhn/rclick.html.


Asunto(s)
Algoritmos , Conformación de Ácido Nucleico , ARN Ribosómico/química , Ribonucleasa III/química , Programas Informáticos , Secuencia de Bases , Benchmarking , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Haloarcula marismortui/genética , Haloarcula marismortui/metabolismo , Imagenología Tridimensional , Internet , Modelos Moleculares , Unión Proteica , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
15.
J Chem Inf Model ; 56(9): 1746-54, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27500460

RESUMEN

HIV-1 replication requires binding to occur between Trans-activation Response Element (TAR) RNA and the TAT protein. This TAR-TAT binding depends on the conformation of TAR, and therapeutic development has attempted to exploit this dynamic behavior. Here we simulate TAR dynamics in the context of mutations inhibiting TAR binding. We find that two tertiary elements, the apical loop and the bulge, can interact directly, and this interaction may be linked to the affinity of TAR for TAT.


Asunto(s)
VIH-1/genética , VIH-1/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Elementos de Respuesta/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/fisiología , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN Viral/química , Replicación Viral
16.
Mol Cell ; 62(4): 603-17, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27184079

RESUMEN

Identifying pairwise RNA-RNA interactions is key to understanding how RNAs fold and interact with other RNAs inside the cell. We present a high-throughput approach, sequencing of psoralen crosslinked, ligated, and selected hybrids (SPLASH), that maps pairwise RNA interactions in vivo with high sensitivity and specificity, genome-wide. Applying SPLASH to human and yeast transcriptomes revealed the diversity and dynamics of thousands of long-range intra- and intermolecular RNA-RNA interactions. Our analysis highlighted key structural features of RNA classes, including the modular organization of mRNAs, its impact on translation and decay, and the enrichment of long-range interactions in noncoding RNAs. Additionally, intermolecular mRNA interactions were organized into network clusters and were remodeled during cellular differentiation. We also identified hundreds of known and new snoRNA-rRNA binding sites, expanding our knowledge of rRNA biogenesis. These results highlight the underexplored complexity of RNA interactomes and pave the way to better understanding how RNA organization impacts biology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Hongos/genética , ARN Mensajero/genética , ARN Neoplásico/genética , ARN Ribosómico/genética , ARN Nucleolar Pequeño/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Sitios de Unión , Diferenciación Celular , Biología Computacional , Reactivos de Enlaces Cruzados/química , Bases de Datos Genéticas , Células Madre Embrionarias/metabolismo , Ficusina/química , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células HeLa , Humanos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Neoplásico/química , ARN Neoplásico/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Adv Colloid Interface Sci ; 232: 49-56, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26482088

RESUMEN

Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters.


Asunto(s)
Simulación por Computador , Conformación de Ácido Nucleico , Ácidos Nucleicos , Animales , Humanos , Iones , Polímeros , Electricidad Estática
18.
Proteins ; 83(12): 2240-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26442703

RESUMEN

R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants.


Asunto(s)
ADN/metabolismo , Mutación , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Arginina/química , Arginina/genética , ADN/química , Humanos , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Termodinámica , Proteína p53 Supresora de Tumor/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-26382545

RESUMEN

We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.


Asunto(s)
Algoritmos , Modelos Teóricos , Simulación por Computador , Método de Montecarlo
20.
J Comput Chem ; 36(10): 773-84, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25706509

RESUMEN

Water is essential for the proper folding of proteins and the assembly of protein-protein/ligand complexes. How water regulates complex formation depends on the chemical and topological details of the interface. The dynamics of water in the interdomain region between an E3 ubiquitin ligase (MDM2) and three different peptides derived from the tumor suppressor protein p53 are studied using molecular dynamics. The peptides show bimodal distributions of interdomain water densities across a range of distances. The addition of a hydrocarbon chain to rigidify the peptides (in a process known as stapling) results in an increase in average hydrophobicity of the peptide-protein interface. Additionally, the hydrophobic staple shields a network of water molecules, kinetically stabilizing a water chain hydrogen-bonded between the peptide and MDM2. These properties could result in a decrease in the energy barrier associated with dehydrating the peptide-protein interface, thereby regulating the kinetics of peptide binding.


Asunto(s)
Pliegue de Proteína , Estructura Secundaria de Proteína , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Péptidos/química , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...