Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749703

RESUMEN

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand mediated activation hindering myelin repair. Following chronic cuprizone induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) mediated degradation. Using ChAT reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and cuprizone demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin induced demyelination. In cuprizone demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following cuprizone demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.Significance Statement Demyelinating diseases like Multiple Sclerosis are characterized by failure of remyelination. Oligodendrocyte progenitor cell (OPC) recruitment and differentiation are crucial aspects for remyelination to occur. Here we show that increased acetylcholine (ACh) contributes to activation of muscarinic receptors that inhibit OPC differentiation. Increased choline acetyltransferase synthesis following demyelination was observed in axons and astrocytes suggestive of a potential for acetylcholine synthesis and release. The increase in ACh levels following demyelination was largely due to reduction of oligodendrocyte derived butyrylcholinesterase that modulates ACh concentration. Development of cell specific esterase stimulator to restore ACh levels may serve as an approach towards inhibiting ongoing demyelination and neurodegeneration.

2.
Brain ; 147(5): 1871-1886, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128553

RESUMEN

Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Remielinización/fisiología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/patología , Humanos , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Diferenciación Celular/fisiología , Cuprizona/toxicidad , Ratones Endogámicos C57BL , Masculino , Femenino , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ratones Transgénicos
3.
Glia ; 71(4): 1018-1035, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537341

RESUMEN

The failure of remyelination in the human CNS contributes to axonal injury and disease progression in multiple sclerosis (MS). In contrast to regions of chronic demyelination in the human brain, remyelination in murine models is preceded by abundant oligodendrocyte progenitor cell (OPC) repopulation, such that OPC density within regions of demyelination far exceeds that of normal white matter (NWM). As such, we hypothesized that efficient OPC repopulation was a prerequisite of successful remyelination, and that increased lesion volume may contribute to the failure of OPC repopulation in human brain. In this study, we characterized the pattern of OPC activation and proliferation following induction of lysolecithin-induced chronic demyelination in adult rabbits. The density of OPCs never exceeded that of NWM and oligodendrocyte density did not recover even at 6 months post-injection. Rabbit OPC recruitment in large lesions was further characterized by chronic Sox2 expression in OPCs located in the lesion core and upregulation of quiescence-associated Prrx1 mRNA at the lesion border. Surprisingly, when small rabbit lesions of equivalent size to mouse were induced, they too exhibited reduced OPC repopulation. However, small lesions were distinct from large lesions as they displayed an almost complete lack of OPC proliferation following demyelination. These differences in the response to demyelination suggest that both volume dependent and species-specific mechanisms are critical in the regulation of OPC proliferation and lesion repopulation and suggest that alternate models will be necessary to fully understand the mechanisms that contribute to failed remyelination in MS.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Animales , Conejos , Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/patología , Proteínas de Homeodominio/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Regeneración Nerviosa/fisiología , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Células Madre/metabolismo , Modelos Animales de Enfermedad
4.
Psychopharmacology (Berl) ; 239(11): 3539-3550, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36098762

RESUMEN

Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.


Asunto(s)
Analgésicos Opioides , Dolor Crónico , Ratas , Animales , Masculino , Analgésicos Opioides/farmacología , Oxicodona/farmacología , Nocicepción , Motivación , Adyuvante de Freund , Proteína 3 de la Respuesta de Crecimiento Precoz
5.
Sci Rep ; 12(1): 6160, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418597

RESUMEN

Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.


Asunto(s)
Señalización del Calcio , Células Precursoras de Oligodendrocitos , Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio de la Dieta/metabolismo , Humanos , Agonistas Muscarínicos/farmacología , Proteína ORAI1/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/metabolismo
6.
Nat Commun ; 12(1): 1923, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772011

RESUMEN

Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease.


Asunto(s)
Diferenciación Celular/genética , Microambiente Celular/genética , Enfermedades Desmielinizantes/genética , Perfilación de la Expresión Génica/métodos , Células Precursoras de Oligodendrocitos/metabolismo , Remielinización/genética , Animales , Axones/metabolismo , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Células Precursoras de Oligodendrocitos/citología , Sulfatasas/genética , Sulfatasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
7.
J Neurosci ; 41(10): 2245-2263, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33472827

RESUMEN

The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.


Asunto(s)
Enfermedades Autoinmunes Desmielinizantes SNC/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Interferón gamma/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados
8.
J Am Soc Mass Spectrom ; 31(12): 2462-2468, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-32926612

RESUMEN

Destruction of myelin, or demyelination, is a characteristic of traumatic spinal cord injury and pathognomonic for primary demyelinating pathologies such as multiple sclerosis (MS). The regenerative process known as remyelination, which can occur following demyelination, fails as MS progresses. Models of focal demyelination by local injection of gliotoxins have provided important biological insights into the demyelination/remyelination process. Here, injection of lysolecithin to induce spinal cord demyelination is investigated using matrix-assisted laser desorption/ionization mass spectrometry imaging. A segmentation analysis revealed changes to the lipid composition during lysolecithin-induced demyelination at the lesion site and subsequent remyelination over time. The results of this study can be utilized to identify potential myelin-repair mechanisms and in the design of therapeutic strategies to enhance myelin repair.


Asunto(s)
Enfermedades Desmielinizantes/patología , Vaina de Mielina/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Médula Espinal/patología , Animales , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Lípidos/análisis , Lisofosfatidilcolinas/efectos adversos , Ratones Endogámicos BALB C , Vaina de Mielina/química , Remielinización , Médula Espinal/química
9.
Cell Rep ; 29(4): 904-919.e9, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31644912

RESUMEN

Remyelination requires the generation of new oligodendrocytes (OLs), which are derived from oligodendrocyte progenitor cells (OPCs). Maturation of OPCs into OLs is a multi-step process. Here, we describe a microRNA expressed by OLs, miR-27a, as a regulator of OL development and survival. Increased levels of miR-27a were found in OPCs associated with multiple sclerosis (MS) lesions and in animal models of demyelination. Increased levels of miR-27a led to inhibition of OPC proliferation by cell-cycle arrest, as well as impaired differentiation of human OPCs (hOPCs) and myelination by dysregulating the Wnt-ß-catenin signaling pathway. In vivo administration of miR-27a led to suppression of myelinogenic signals, leading to loss of endogenous myelination and remyelination. Our findings provide evidence supporting a critical role for a steady-state level of OL-specific miR-27a in supporting multiple steps in the complex process of OPC maturation and remyelination.


Asunto(s)
Encéfalo/metabolismo , MicroARNs/metabolismo , Vaina de Mielina/metabolismo , Animales , Encéfalo/citología , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neurogénesis , Vía de Señalización Wnt
10.
Cell Rep ; 25(12): 3435-3450.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566868

RESUMEN

Human oligodendrocyte progenitor cells (hOPCs) persist into adulthood as an abundant precursor population capable of division and differentiation. The transcriptional mechanisms that regulate hOPC homeostasis remain poorly defined. Herein, we identify paired related homeobox protein 1 (PRRX1) in primary PDGFαR+ hOPCs. We show that enforced PRRX1 expression results in reversible G1/0 arrest. While both PRRX1 splice variants reduce hOPC proliferation, only PRRX1a abrogates migration. hOPC engraftment into hypomyelinated shiverer/rag2 mouse brain is severely impaired by PRRX1a, characterized by reduced cell proliferation and migration. PRRX1 induces a gene expression signature characteristic of stem cell quiescence. Both IFN-γ and BMP signaling upregulate PRRX1 and induce quiescence. PRRX1 knockdown modulates IFN-γ-induced quiescence. In mouse brain, PRRX1 mRNA was detected in non-dividing OPCs and is upregulated in OPCs following demyelination. Together, these data identify PRRX1 as a regulator of quiescence in hOPCs and as a potential regulator of pathological quiescence.


Asunto(s)
Ciclo Celular , Proteínas de Homeodominio/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Proteínas Morfogenéticas Óseas/farmacología , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/farmacología , Antígeno Ki-67/metabolismo , Ratones , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/trasplante , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
11.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959237

RESUMEN

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Asunto(s)
Vaina de Mielina/fisiología , Neurogénesis/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Receptor Muscarínico M3/fisiología , Remielinización/fisiología , Animales , Trasplante de Tejido Encefálico , Señalización del Calcio , Células Cultivadas , Trasplante de Tejido Fetal , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Mutantes Neurológicos , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Prosencéfalo/embriología , Prosencéfalo/trasplante , Interferencia de ARN , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inhibidores , Médula Espinal/química , Médula Espinal/ultraestructura
12.
Neuropsychopharmacology ; 43(6): 1385-1394, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29260792

RESUMEN

Opiate abuse and addiction have become a worldwide epidemic with great societal and financial burdens, highlighting a critical need to understand the neurobiology of opiate addiction. Although several studies have focused on drug-dependent changes in neurons, the role of glia in opiate addiction remains largely unstudied. RNA sequencing pathway analysis from the prefrontal cortex (PFC) of male rats revealed changes in several genes associated with oligodendrocyte differentiation and maturation following heroin self-administration. Among these genes changed was Sox10, which is regulated, in part, by the chromatin remodeler BRG1/SMARCA4. To directly test the functional role of Sox10 in mediating heroin-induced behavioral plasticity, we selectively overexpressed Sox10 and BRG1 in the PFC. Overexpression of either Sox10 or BRG1 decreased the motivation to obtain heroin infusions in a progressive ratio test without altering the acquisition or maintenance of heroin self-administration. These data demonstrate a critical, and perhaps compensatory, role of Sox10 and BRG1 in oligodendrocytes in regulating the motivation for heroin.


Asunto(s)
Dependencia de Heroína/metabolismo , Heroína/administración & dosificación , Narcóticos/administración & dosificación , Células Precursoras de Oligodendrocitos/metabolismo , Corteza Prefrontal/metabolismo , Factores de Transcripción SOXE/metabolismo , Animales , ADN Helicasas/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Motivación/efectos de los fármacos , Motivación/fisiología , Proteínas Nucleares/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Recompensa , Factores de Transcripción SOXE/genética , Autoadministración , Factores de Transcripción/metabolismo
13.
Stem Cell Reports ; 9(2): 710-723, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793249

RESUMEN

Impaired human oligodendrocyte progenitor cell (hOPC) differentiation likely contributes to failed remyelination in multiple sclerosis. The characterization of molecular pathways that regulate hOPC differentiation will provide means to induce remyelination. In this study, we determined the gene expression profile of PDGFαR+ hOPCs during initial oligodendrocyte commitment. Weighted gene coexpression network analysis was used to define progenitor and differentiation-specific gene expression modules and functionally important hub genes. These modules were compared with rodent OPC and oligodendrocyte data to determine the extent of species conservation. These analyses identified G-protein ß4 (GNB4), which was associated with hOPC commitment. Lentiviral GNB4 overexpression rapidly induced human oligodendrocyte differentiation. Following xenograft in hypomyelinating shiverer/rag2 mice, GNB4 overexpression augmented myelin synthesis and the ability of hOPCs to ensheath host axons, establishing GNB4 as functionally important in human myelination. As such, network analysis of hOPC gene expression accurately predicts genes that influence human oligodendrocyte differentiation in vivo.


Asunto(s)
Diferenciación Celular/genética , Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Axones/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Perfilación de la Expresión Génica , Genómica/métodos , Humanos , Oligodendroglía/citología , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Roedores , Transducción de Señal , Transcriptoma
14.
Sci Rep ; 7: 43658, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272550

RESUMEN

Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1+ microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN+ neurons and GFAP+ astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse.


Asunto(s)
Activinas/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Núcleo Accumbens/metabolismo , Animales , Astrocitos/metabolismo , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Masculino , Microglía/metabolismo , Neuronas/metabolismo , Ratas
15.
Exp Neurol ; 283(Pt B): 489-500, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27001544

RESUMEN

Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.


Asunto(s)
Trasplante de Células/métodos , Enfermedades Desmielinizantes/cirugía , Oligodendroglía/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular , Humanos , Regeneración/fisiología
16.
Stem Cells Dev ; 24(18): 2114-26, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26083238

RESUMEN

Murine postnatal neural stem cells (NSCs) give rise to neurons, astrocytes, or oligodendrocytes (OLs); however, our knowledge of the genes that control this lineage specification is incomplete. In this study, we show that nuclear factor I X (NFIX), a transcription factor known to regulate NSC quiescence, also suppresses oligodendrogenesis (ODG) from NSCs. Immunostaining reveals little or no expression of NFIX in OL lineage cells both in vivo and in vitro. Loss of NFIX from subventricular zone (SVZ) NSCs results in enhanced ODG both in vivo and in vitro, while forced expression of NFIX blocks NSC differentiation into OLs in vitro. RNA-seq analysis shows that genes previously shown to be differentially expressed in OL progenitors are significantly enriched in RNA from Nfix(-/-) versus wild-type NSCs. These data indicate that NFIX influences the lineage specification of postnatal SVZ NSCs, specifically suppressing ODG.


Asunto(s)
Ventrículos Laterales/embriología , Factores de Transcripción NFI/genética , Células-Madre Neurales/citología , Neurogénesis/fisiología , Oligodendroglía/citología , Animales , Astrocitos/citología , Linaje de la Célula , Células Cultivadas , Ventrículos Laterales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Factores de Transcripción SOXE/metabolismo
17.
J Neurosci ; 35(8): 3676-88, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716865

RESUMEN

Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.


Asunto(s)
Células Madre Fetales/citología , Antagonistas Muscarínicos/farmacología , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Quinuclidinas/farmacología , Regeneración , Tetrahidroisoquinolinas/farmacología , Animales , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Células Cultivadas , Proteínas de Unión al ADN/genética , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Células Madre Fetales/efectos de los fármacos , Células Madre Fetales/metabolismo , Células Madre Fetales/trasplante , Humanos , Masculino , Ratones , Agonistas Muscarínicos/farmacología , Vaina de Mielina/genética , Neurogénesis , Antígenos O/genética , Antígenos O/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/trasplante , Prosencéfalo/citología , Prosencéfalo/embriología , Receptor Muscarínico M3 , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Succinato de Solifenacina
18.
Stem Cell Reports ; 3(2): 250-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25254339

RESUMEN

Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology that affects the CNS. While current therapies are primarily directed against the immune system, the new challenge is to address progressive MS with remyelinating and neuroprotective strategies. Here, we develop a highly reproducible protocol to efficiently derive oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes from induced pluripotent stem cells (iPSCs). Key elements of our protocol include adherent cultures, dual SMAD inhibition, and addition of retinoids from the beginning of differentiation, which lead to increased yields of OLIG2 progenitors and high numbers of OPCs within 75 days. Furthermore, we show the generation of viral and integration-free iPSCs from primary progressive MS (PPMS) patients and their efficient differentiation to oligodendrocytes. PPMS OPCs are functional, as demonstrated by in vivo myelination in the shiverer mouse. These results provide encouraging advances toward the development of autologous cell therapies using iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Esclerosis Múltiple/patología , Oligodendroglía/citología , Animales , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/metabolismo , Oligodendroglía/trasplante , Proteínas Smad/antagonistas & inhibidores , Proteínas Smad/metabolismo , Trasplante Heterólogo , Tretinoina/farmacología
19.
Proc Natl Acad Sci U S A ; 111(28): E2885-94, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982138

RESUMEN

Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a(+)O4(+) OPCs relative to CD133(+)CD140a(-) neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Elementos de Facilitación Genéticos , Xenoinjertos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , Lentivirus , Ratones , Células-Madre Neurales/citología , Proteínas Nucleares , Oligodendroglía/citología , Trasplante de Células Madre , Factores de Transcripción/genética , Transcriptoma , Transducción Genética
20.
Am J Physiol Cell Physiol ; 305(8): C854-66, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23885059

RESUMEN

Flow impingement at arterial bifurcations causes high frictional force [or wall shear stress (WSS)], and flow acceleration and deceleration in the branches create positive and negative streamwise gradients in WSS (WSSG), respectively. Intracranial aneurysms tend to form in regions with high WSS and positive WSSG. However, little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile gene expression in cultured ECs exposed to positive or negative WSSG for 24 h in a flow chamber where WSS varied between 3.5 and 28.4 Pa. Gene ontology and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of proinflammatory genes. To determine if similar responses occur in vivo, we examined EC proliferation and expression of the matrix metalloproteinase ADAMTS1 under high WSS and WSSG created at the basilar terminus of rabbits after bilateral carotid ligation. Precise hemodynamic conditions were determined by computational fluid dynamic simulations from three-dimensional angiography and mapped on immunofluorescence staining for the proliferation marker Ki-67 and ADAMTS1. Both proliferation and ADAMTS1 were significantly higher in ECs under positive WSSG than in adjacent regions of negative WSSG. Our results indicate that WSSG elicits distinct EC gene expression profiles and particular biological pathways including increased cell proliferation and matrix processing. Such EC responses may be important in understanding the mechanisms of intracranial aneurysm initiation at regions of high WSS and positive WSSG.


Asunto(s)
Proteínas ADAM/biosíntesis , Células Endoteliales/metabolismo , Hemodinámica , Antígeno Ki-67/biosíntesis , Estrés Mecánico , Animales , Aorta , Apoptosis , Bovinos , Línea Celular , Proliferación Celular , Femenino , Expresión Génica , Aneurisma Intracraneal/metabolismo , Modelos Cardiovasculares , Conejos , Flujo Sanguíneo Regional , Resistencia al Corte , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...