Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38725289

RESUMEN

While several functions of the endogenous prion protein (PrP) have been studied, the homeostatic function of PrP is still debated. Notably, PrP is highly expressed on mast cells, granular immune cells that regulate inflammation. When activated, mast cells shed PrP though the mechanism and consequences of this are not yet understood. First, we tested several mast cell lines and found that, while PrP was almost always present, the total amount differed greatly. Activation of mast cells induced a cleavage of the N-terminal region of PrP, and this was reduced by protease inhibitors. Exogenous mast cell proteases caused a similar loss of the PrP N-terminus. Additionally, mast cells shed PrP in an ADAM10-dependent fashion even in the absence of activation. Our results suggest that PrP is cleaved from resting mast cells by ADAM10 and from activated mast cells by mast cell proteases. PrP also appears to affect mast cell function, as Prnp-/- BMMC showed lower levels of degranulation and cytokine release, as well as lower levels of both FcεRI and CD117. Finally, we sought to provide clinical relevance by measuring the levels of PrP in bodily fluids of asthmatic patients, a disease that involves the activation of mast cells. We found an N-terminal fragment of PrP could be detected in human sputum and serum and the amount of this PrP fragment was decreased in the serum of patients with asthma.

2.
Mol Neurodegener ; 19(1): 42, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802940

RESUMEN

Microglia play diverse pathophysiological roles in Alzheimer's disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell function in vivo has been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-ß (Aß) deposition. Mice expressing CD33M have increased Aß levels, more diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to 5XFAD control mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m+ microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía , Isoformas de Proteínas , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Humanos , Ratones , Isoformas de Proteínas/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología
3.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139358

RESUMEN

A distinctive signature of the prion diseases is the accumulation of the pathogenic isoform of the prion protein, PrPSc, in the central nervous system of prion-affected humans and animals. PrPSc is also found in peripheral tissues, raising concerns about the potential transmission of pathogenic prions through human food supplies and posing a significant risk to public health. Although muscle tissues are considered to contain levels of low prion infectivity, it has been shown that myotubes in culture efficiently propagate PrPSc. Given the high consumption of muscle tissue, it is important to understand what factors could influence the establishment of a prion infection in muscle tissue. Here we used in vitro myotube cultures, differentiated from the C2C12 myoblast cell line (dC2C12), to identify factors affecting prion replication. A range of experimental conditions revealed that PrPSc is tightly associated with proteins found in the systemic extracellular matrix, mostly fibronectin (FN). The interaction of PrPSc with FN decreased prion infectivity, as determined by standard scrapie cell assay. Interestingly, the prion-resistant reserve cells in dC2C12 cultures displayed a FN-rich extracellular matrix while the prion-susceptible myotubes expressed FN at a low level. In agreement with the in vitro results, immunohistopathological analyses of tissues from sheep infected with natural scrapie demonstrated a prion susceptibility phenotype linked to an extracellular matrix with undetectable levels of FN. Conversely, PrPSc deposits were not observed in tissues expressing FN. These data indicate that extracellular FN may act as a natural barrier against prion replication and that the extracellular matrix composition may be a crucial feature determining prion tropism in different tissues.


Asunto(s)
Fibronectinas , Enfermedades por Prión , Priones , Scrapie , Animales , Humanos , Línea Celular , Fibronectinas/uso terapéutico , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/prevención & control , Priones/metabolismo , Scrapie/metabolismo , Ovinos
4.
J Immunol ; 210(9): 1447-1458, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939393

RESUMEN

IgE Abs, best known for their role in allergic reactions, have only rarely been used in immunotherapies. Nevertheless, they offer a potential alternative to the more commonly used IgGs. The affinity of IgE Ag binding influences the type of response from mast cells, so any immunotherapies using IgEs must balance Ag affinity with desired therapeutic effect. One potential way to harness differential binding affinities of IgE is in protein aggregation diseases, where low-affinity binding of endogenous proteins is preferred, but enhanced binding of clusters of disease-associated aggregated proteins could target responses to the sites of disease. For this reason, we sought to create a low-affinity IgE against the prion protein (PrP), which exists in an endogenous monomeric state but can misfold into aggregated states during the development of prion disease. First, we determined that mast cell proteases tryptase and cathepsin G were capable of degrading PrP. Then we engineered a recombinant IgE Ab directed against PrP from the V region of a PrP-specific IgG and tested its activation of the human mast cell line LAD2. The αPrP IgE bound LAD2 through Fc receptors. Crosslinking receptor-bound αPrP IgE activated SYK and ERK phosphorylation, caused Fc receptor internalization, and resulted in degranulation. This work shows that a recombinant αPrP IgE can activate LAD2 cells to release enzymes that can degrade PrP, suggesting that IgE may be useful in targeting diseases that involve protein aggregation.


Asunto(s)
Proteínas Priónicas , Receptores de IgE , Humanos , Receptores de IgE/metabolismo , Proteínas Priónicas/metabolismo , Mastocitos/metabolismo , Péptido Hidrolasas/metabolismo , Agregado de Proteínas , Inmunoglobulina E/metabolismo , Degranulación de la Célula
5.
Protein Sci ; 31(12): e4477, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36254680

RESUMEN

Prion diseases are fatal neurodegenerative diseases caused by pathogenic misfolding of the prion protein, PrP. They are transmissible between hosts, and sometimes between different species, as with transmission of bovine spongiform encephalopathy to humans. Although PrP is found in a wide range of vertebrates, prion diseases are seen only in certain mammals, suggesting that infectious misfolding was a recent evolutionary development. To explore when PrP acquired the ability to misfold infectiously, we reconstructed the sequences of ancestral versions of PrP from the last common primate, primate-rodent, artiodactyl, placental, bird, and amniote. Recombinant ancestral PrPs were then tested for their ability to form ß-sheet aggregates, either spontaneously or when seeded with infectious prion strains from human, cervid, or rodent species. The ability to aggregate developed after the oldest ancestor (last common amniote), and aggregation capabilities diverged along evolutionary pathways consistent with modern-day susceptibilities. Ancestral bird PrP could not be seeded with modern-day prions, just as modern-day birds are resistant to prion disease. Computational modeling of structures suggested that differences in helix 2 could account for the resistance of ancestral bird PrP to seeding. Interestingly, ancestral primate PrP could be converted by all prion seeds, including both human and cervid prions, raising the possibility that species descended from an ancestral primate have retained the susceptibility to conversion by cervid prions. More generally, the results suggest that susceptibility to prion disease emerged prior to ~100 million years ago, with placental mammals possibly being generally susceptible to disease.


Asunto(s)
Enfermedades por Prión , Priones , Embarazo , Animales , Bovinos , Femenino , Humanos , Proteínas Priónicas/química , Placenta/metabolismo , Priones/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Mamíferos
7.
PLoS Pathog ; 17(6): e1009703, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34181702

RESUMEN

Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.


Asunto(s)
Dispersión Dinámica de Luz/métodos , Fotometría/métodos , Proteínas PrPSc/análisis , Proteínas PrPSc/química , Animales , Cricetinae , Hidrodinámica , Ratones , Estructura Cuaternaria de Proteína
8.
Prion ; 15(1): 107-111, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34132175

RESUMEN

Sporadic Creutzfeldt-Jakob Disease (sCJD) rarely affects women of childbearing age. There is currently no evidence of vertical transmission. Given the biosafety implications of performing Caesarean sections (C-section) in these patients, we used sensitive real-time quaking-induced conversion (RT-QuIC) assays to test for the infectious prion protein (PrPSc) in products of gestation. A 35-year-old woman with sCJD presented in her 10th gestational week with an eight month history of progressive cognitive impairment. During C-section, amniotic fluid, cord blood and placental tissue were collected and analysed using RT-QuIC protocols adapted for use with these tissues. The patient's diagnosis of sCJD, MM2 subtype, was confirmed at autopsy. There were borderline positive results in one sampled area of the placenta, but otherwise the cord blood and amniotic fluid were negative on our RT-QuIC assays. A healthy baby was delivered via C-section at 36 weeks and 3 days gestational age, with no evidence of neurological disease to date. We conclude that precautions should be taken with products of gestation, but the level of PrPSc is extremely low.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Adulto , Bioensayo , Femenino , Humanos , Placenta , Embarazo , Proteínas Priónicas
9.
Biomolecules ; 11(1)2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466947

RESUMEN

Prion diseases are the hallmark protein folding neurodegenerative disease. Their transmissible nature has allowed for the development of many different cellular models of disease where prion propagation and sometimes pathology can be induced. This review examines the range of simple cell cultures to more complex neurospheres, organoid, and organotypic slice cultures that have been used to study prion disease pathogenesis and to test therapeutics. We highlight the advantages and disadvantages of each system, giving special consideration to the importance of strains when choosing a model and when interpreting results, as not all systems propagate all strains, and in some cases, the technique used, or treatment applied, can alter the very strain properties being studied.


Asunto(s)
Técnicas de Cultivo de Célula , Modelos Biológicos , Organoides/metabolismo , Priones/metabolismo , Animales , Encéfalo/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo
10.
Viruses ; 12(12)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348562

RESUMEN

The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt-Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.


Asunto(s)
Enfermedad Debilitante Crónica/transmisión , Zoonosis/transmisión , Animales , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo Genético , Proteínas Priónicas/genética , Riesgo , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/etiología , Enfermedad Debilitante Crónica/genética
11.
Viruses ; 12(12)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302561

RESUMEN

Creutzfeldt-Jakob disease (CJD) is a rapidly progressive neurodegenerative disease that can arise spontaneously, genetically, or be acquired through iatrogenic exposure. Most patients die within a year of symptom onset. It is rare, affecting 1-2 per million per year, and the majority of cases are sporadic. Primary angiitis of the central nervous system (PACNS) is also rare, affecting 2.4 per million per year. We present a case of an unusually long clinical course of CJD, almost five years, which began with symptoms of apraxia. The patient had biopsy-proven PACNS 16 years prior to clinical presentation, and the site of biopsy was the left parietal lobe. Autopsy revealed multicentric prion plaques in the cerebellum, in the setting of normal genetic testing. The presence of plaques in the cerebellum, and prior neurosurgery, raises the possibility of iatrogenic exposure. We present the details of this case, including pathology from the original biopsy and final autopsy, as well as a review of relevant cases in the literature.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/etiología , Priones/metabolismo , Vasculitis del Sistema Nervioso Central/diagnóstico , Vasculitis del Sistema Nervioso Central/etiología , Cerebelo/diagnóstico por imagen , Síndrome de Creutzfeldt-Jakob/metabolismo , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Enfermedad Iatrogénica , Inmunohistoquímica , Imagen por Resonancia Magnética , Persona de Mediana Edad
12.
Acta Neuropathol Commun ; 8(1): 85, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560672

RESUMEN

One of remarkable features of sporadic Creutzfeldt-Jakob disease (sCJD) is the great phenotypic variability. Understanding the molecular basis of this variability has important implications for the development of therapeutic approaches. It is well established that, in many cases, phenotypic heterogeneity of sCJD is under control of two determinants: the genotype at the methionine (M)/valine (V) polymorphic codon 129 of the human prion protein gene and the type, 1 or 2, of the pathogenic and disease-related form of the prion protein, PrPD. However, this scenario fails to explain the existence of distinct heterozygous sCJDMV2 subtypes, where heterogeneity occurs without any variation of the 129 allotype and PrPD type. One of these subtypes, denoted sCJDMV2C, associated with PrPD type 2, is characterized by widespread spongiform degeneration of the cerebral cortex (C). The second variant, denoted sCJDMV2K, features prominent deposition of PrPD amyloid forming kuru type (K) plaques. Here we used a mass spectrometry based approach to test the hypothesis that phenotypic variability within the sCJDMV2 subtype is at least partly determined by the abundance of 129 M and 129 V polymorphic forms of proteinase K-resistant PrPD (resPrPD). Consistent with this hypothesis, our data demonstrated a strong correlation of the MV2C and MV2K phenotypes with the relative populations of protease-resistant forms of the pathogenic prion proteins, resPrPD-129 M and resPrPD-129 V, where resPrPD-129 M dominated in the sCJDMV2C variant and resPrPD-129 V in the sCJDMV2K variant. This finding suggests an important, previously unrecognized mechanism for phenotypic determination in human prion diseases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Proteínas Priónicas/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Mapeo Epitopo , Humanos , Espectrometría de Masas , Metionina/química , Fenotipo , Proteínas Priónicas/química , Valina/química
13.
J Biol Chem ; 295(25): 8460-8469, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358064

RESUMEN

Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.


Asunto(s)
Encéfalo/metabolismo , Lípidos/química , Maleatos/química , Nanoestructuras/química , Poliestirenos/química , Proteínas Priónicas/metabolismo , Animales , Cricetinae , Maleatos/síntesis química , Maleatos/metabolismo , Metilaminas/química , Ratones , Fosfolípidos/química , Fosfolípidos/metabolismo , Poliestirenos/síntesis química , Poliestirenos/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/aislamiento & purificación , Compuestos de Sulfhidrilo/química
14.
Clin Infect Dis ; 70(4): 692-695, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31247065

RESUMEN

We report the cases of 3 patients with fatal, disseminated Mycobacterium chimaera infections following cardiac surgeries. Progressive neurocognitive decline and death were explained by active granulomatous encephalitis, with widespread involvement of other organs. This syndrome is clinically elusive and, thus, may have caused deaths in prior reported series.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Encefalitis , Infecciones por Mycobacterium no Tuberculosas , Infecciones por Mycobacterium , Mycobacterium , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Encefalitis/diagnóstico , Encefalitis/etiología , Humanos , Infecciones por Mycobacterium/diagnóstico , Infecciones por Mycobacterium/etiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-29784843

RESUMEN

Prion diseases are a group of neurodegenerative diseases associated with the misfolding of the cellular prion protein (PrPC) into the infectious form (PrPSc). There are currently no treatments for prion disease. Bile acids have the ability to protect hepatocytes from apoptosis and are neuroprotective in animal models of other protein-folding neurodegenerative diseases, including Huntington's, Parkinson's, and Alzheimer's disease. Importantly, bile acids are approved for clinical use in patients with cirrhosis and have recently been shown to be safe and possibly effective in pilot trials of patients with amyotrophic lateral sclerosis (ALS). We previously reported that the bile acid ursodeoxycholic acid (UDCA), given early in disease, prolonged incubation periods in male RML-infected mice. Here, we expand on this result to include tauro-ursodeoxycholic acid (TUDCA) treatment trials and delayed UDCA treatment. We demonstrate that despite a high dose of TUDCA given early in disease, there was no significant difference in incubation periods between treated and untreated cohorts, regardless of sex. In addition, delayed treatment with a high dose of UDCA resulted in a significant shortening of the average survival time for both male and female mice compared to their sex-matched controls, with evidence of increased BiP, a marker of apoptosis, in treated female mice. Our findings suggest that treatment with high-dose TUDCA provides no therapeutic benefit and that delayed treatment with high-dose UDCA is ineffective and could worsen outcomes.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas PrPSc/efectos de los fármacos , Enfermedades por Prión/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Ácido Ursodesoxicólico/farmacología , Animales , Modelos Animales de Enfermedad , Esquema de Medicación , Femenino , Masculino , Ratones , Proteínas PrPSc/patogenicidad , Enfermedades por Prión/mortalidad , Enfermedades por Prión/patología , Análisis de Supervivencia , Tiempo de Tratamiento , Insuficiencia del Tratamiento
16.
Nat Commun ; 7: 12058, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27346148

RESUMEN

The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.


Asunto(s)
Metaloporfirinas/farmacología , Chaperonas Moleculares/farmacología , Fragmentos de Péptidos/química , Priones/química , Pliegue de Proteína , Pirroles/farmacología , Animales , Cricetinae , Mesocricetus , Metaloporfirinas/química , Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Pirroles/química
17.
Can J Neurol Sci ; 43(4): 593-5, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26972054

RESUMEN

Frontotemporal brain sagging syndrome is a dementia associated with hypersomnolence, personality changes, and features of intracranial hypotension on magnetic resonance imaging. The literature is sparse with respect to treatment options; many patients simply worsen. We present a case in which this syndrome responded to lumbar dural reduction surgery. Postoperative magnetic resonance imaging indicated normalization of brain sagging and lumbar intrathecal pressure. Although no evidence of cerebrospinal leak was found, extremely thin dura was noted intraoperatively, suggesting that a thin and incompetent dura could result in this low-pressure syndrome. Clinicians who encounter this syndrome should consider dural reduction surgery as a treatment strategy.


Asunto(s)
Trastornos de Somnolencia Excesiva/complicaciones , Demencia Frontotemporal/complicaciones , Demencia Frontotemporal/cirugía , Hipotensión Intracraneal/complicaciones , Procedimientos Neuroquirúrgicos/métodos , Trastornos de la Personalidad/complicaciones , Trastornos de Somnolencia Excesiva/diagnóstico por imagen , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Hipotensión Intracraneal/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos de la Personalidad/diagnóstico por imagen
18.
Glia ; 64(6): 937-51, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26880394

RESUMEN

Prion diseases are progressive neurodegenerative disorders affecting humans and various mammals. The prominent neuropathological change in prion diseases is neuroinflammation characterized by activation of neuroglia surrounding prion deposition. The cause and effect of this cellular response, however, is unclear. We investigated innate immune defenses against prion infection using primary mixed neuronal and glial cultures. Conditional prion propagation occurred in glial cultures depending on their immune status. Preconditioning of the cells with the toll-like receptor (TLR) ligand, lipopolysaccharide, resulted in a reduction in prion propagation, whereas suppression of the immune responses with the synthetic glucocorticoid, dexamethasone, increased prion propagation. In response to recombinant prion fibrils, glial cells up-regulated TLRs (TLR1 and TLR2) expression and secreted cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, granulocyte-macrophage colony-stimulating factor, and interferon-ß). Preconditioning of neuronal and glial cultures with recombinant prion fibrils inhibited prion replication and altered microglial and astrocytic populations. Our results provide evidence that, in early stages of prion infection, glial cells respond to prion infection through TLR-mediated innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Neuroglía/metabolismo , Priones/metabolismo , Receptores Toll-Like/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Ratones , Neuroglía/inmunología , Priones/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
19.
PLoS One ; 10(6): e0129087, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26070139

RESUMEN

The deposition of Aß peptide in the brain is the key event in Alzheimer disease progression. Therefore, the prevention of Aß self assembly into disease-associated oligomers is a logical strategy for treatment. π stacking is known to provide structural stability to many amyloids; two phenylalanine residues within the Aß 14-23 self recognition element are in such an arrangement in many solved structures. Therefore, we targeted this structural stacking by substituting these two phenylalanine residues with their D-enantiomers. The resulting peptides were able to modulate Aß aggregation in vitro and reduce Aß cytotoxicity in primary neuronal cultures. Using kinetic analysis of fibril formation, electron microscopy and dynamic light scattering characterization of oligomer size distributions, we demonstrate that, in addition to altering fibril structural characteristics, these peptides can induce the formation of larger amorphous aggregates which are protective against toxic oligomers, possibly because they are able to sequester the toxic oligomers during co-incubation. Alternatively, they may alter the surface structure of the oligomers such that they can no longer interact with cells to induce toxic pathways.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Diseño de Fármacos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo , Relación Estructura-Actividad Cuantitativa , Péptidos beta-Amiloides/toxicidad , Humanos , Cinética , Modelos Moleculares , Agregación Patológica de Proteínas/tratamiento farmacológico , Conformación Proteica , Multimerización de Proteína/efectos de los fármacos
20.
J Virol ; 89(15): 7660-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972546

RESUMEN

UNLABELLED: Prion diseases are fatal neurodegenerative disorders associated with the conversion of cellular prion protein (PrPC) into its aberrant infectious form (PrPSc). There is no treatment available for these diseases. The bile acids tauroursodeoxycholic acid(TUDCA) and ursodeoxycholic acid (UDCA) have been recently shown to be neuroprotective in other protein misfolding disease models, including Parkinson's, Huntington's and Alzheimer's diseases, and also in humans with amyotrophic lateral sclerosis.Here, we studied the therapeutic efficacy of these compounds in prion disease. We demonstrated that TUDCA and UDCA substantially reduced PrP conversion in cell-free aggregation assays, as well as in chronically and acutely infected cell cultures. This effect was mediated through reduction of PrPSc seeding ability, rather than an effect on PrPC. We also demonstrated the ability of TUDCA and UDCA to reduce neuronal loss in prion-infected cerebellar slice cultures. UDCA treatment reduced astrocytosis and prolonged survival in RML prion-infected mice. Interestingly, these effects were limited to the males, implying a gender-specific difference in drug metabolism. Beyond effects on PrPSc, we found that levels of phosphorylated eIF2 were increased at early time points, with correlated reductions in postsynaptic density protein 95. As demonstrated for other neurodegenerative diseases, we now show that TUDCA and UDCA may have a therapeutic role in prion diseases, with effects on both prion conversion and neuroprotection. Our findings, together with the fact that these natural compounds are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans, make these compounds promising alternatives for the treatment of prion diseases. IMPORTANCE: Prion diseases are fatal neurodegenerative diseases that are transmissible to humans and other mammals. There are no disease-modifying therapies available, despite decades of research. Treatment targets have included inhibition of protein accumulation,clearance of toxic aggregates, and prevention of downstream neurodegeneration. No one target may be sufficient; rather, compounds which have a multimodal mechanism, acting on different targets, would be ideal. TUDCA and UDCA are bile acids that may fulfill this dual role. Previous studies have demonstrated their neuroprotective effects in several neurodegenerative disease models, and we now demonstrate that this effect occurs in prion disease, with an added mechanistic target of upstream prion seeding. Importantly, these are natural compounds which are orally bioavailable, permeable to the blood-brain barrier, and U.S.Food and Drug Administration-approved for use in humans with primary biliary cirrhosis. They have recently been proven efficacious in human amyotrophic lateral sclerosis. Therefore, these compounds are promising options for the treatment of prion diseases.


Asunto(s)
Neuronas/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Ácido Tauroquenodesoxicólico/metabolismo , Ácido Ursodesoxicólico/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Muerte Celular , Supervivencia Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...