Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell Death Dis ; 14(7): 413, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37433784

RESUMEN

ATPase Inhibitory Factor 1 (IF1) regulates the activity of mitochondrial ATP synthase. The expression of IF1 in differentiated human and mouse cells is highly variable. In intestinal cells, the overexpression of IF1 protects against colon inflammation. Herein, we have developed a conditional IF1-knockout mouse model in intestinal epithelium to investigate the role of IF1 in mitochondrial function and tissue homeostasis. The results show that IF1-ablated mice have increased ATP synthase/hydrolase activities, leading to profound mitochondrial dysfunction and a pro-inflammatory phenotype that impairs the permeability of the intestinal barrier compromising mouse survival upon inflammation. Deletion of IF1 prevents the formation of oligomeric assemblies of ATP synthase and alters cristae structure and the electron transport chain. Moreover, lack of IF1 promotes an intramitochondrial Ca2+ overload in vivo, minimizing the threshold to Ca2+-induced permeability transition (mPT). Removal of IF1 in cell lines also prevents the formation of oligomeric assemblies of ATP synthase, minimizing the threshold to Ca2+-induced mPT. Metabolomic analyses of mice serum and colon tissue highlight that IF1 ablation promotes the activation of de novo purine and salvage pathways. Mechanistically, lack of IF1 in cell lines increases ATP synthase/hydrolase activities and installs futile ATP hydrolysis in mitochondria, resulting in the activation of purine metabolism and in the accumulation of adenosine, both in culture medium and in mice serum. Adenosine, through ADORA2B receptors, promotes an autoimmune phenotype in mice, stressing the role of the IF1/ATP synthase axis in tissue immune responses. Overall, the results highlight that IF1 is required for ATP synthase oligomerization and that it acts as a brake to prevent ATP hydrolysis under in vivo phosphorylating conditions in intestinal cells.


Asunto(s)
Adenosina , Inflamación , Proteínas Mitocondriales , Animales , Humanos , Ratones , Adenosina Trifosfato , Diferenciación Celular , Ratones Noqueados , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Inhibidora ATPasa
2.
Food Funct ; 13(10): 5640-5653, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35506542

RESUMEN

Nowadays, there is great interest in the discovery of food compounds that might inhibit gut microbial TMA production from its methylamine precursors. In this work, an innovative novel screening strategy capable of rapidly determining the differences in the metabolic response of Klebsiella pneumoniae, a bacteria producing TMA under aerobic conditions, to a library of extracts obtained from food and natural sources was developed. The proposed high-throughput screening (HTS) method combines resazurin reduction assay in 384-well plates and Gaussian Processes as a machine learning tool for data processing, allowing for a fast, cheap and highly standardized evaluation of any interfering effect of a given compound or extract on the microbial metabolism sustained by L-carnitine utilization. As a proof-of-concept of this strategy, a pilot screening of 39 extracts and 6 pure compounds was performed to search for potential candidates that could inhibit in vitro TMA formation from L-carnitine. Among all the extracts tested, three of them were selected as candidates to interfere with TMA formation. Subsequent in vitro assays confirmed the potential of oregano and red thyme hexane extracts (at 1 mg mL-1) to inhibit TMA formation in bacterial lysates. In such in vitro assay, the red thyme extract exerted comparable effects on TMA reduction (∼40%) as 7.5 mM meldonium (∼50% TMA decrease), a reported L-carnitine analogue. Our results show that metabolic activity could be used as a proxy of the capacity to produce TMA under controlled culture conditions using L-carnitine to sustain metabolism.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Carnitina/metabolismo , Microbioma Gastrointestinal/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Metilaminas/metabolismo , Oxazinas , Fitoquímicos , Xantenos
3.
Sci Rep ; 10(1): 572, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953445

RESUMEN

Recent evidences indicate that mitochondrial genes and function are decreased in active ulcerative colitis (UC) patients, in particular, the activity of Complex I of the electron transport chain is heavily compromised. MCJ is a mitochondrial inner membrane protein identified as a natural inhibitor of respiratory chain Complex I. The induction of experimental colitis in MCJ-deficient mice leads to the upregulation of Timp3 expression resulting in the inhibition of TACE activity that likely inhibits Tnf and Tnfr1 shedding from the cell membrane in the colon. MCJ-deficient mice also show higher expression of Myd88 and Tlr9, proinflammatory genes and disease severity. Interestingly, the absence of MCJ resulted in distinct microbiota metabolism and composition, including a member of the gut community in UC patients, Ruminococcus gnavus. These changes provoked an effect on IgA levels. Gene expression analyses in UC patients showed decreased levels of MCJ and higher expression of TIMP3, suggesting a relevant role of mitochondrial genes and function among active UC. The MCJ deficiency disturbs the regulatory relationship between the host mitochondria and microbiota affecting disease severity. Our results indicate that mitochondria function may be an important factor in the pathogenesis. All together support the importance of MCJ regulation during UC.


Asunto(s)
Bacterias/clasificación , Colitis Ulcerosa/genética , Disbiosis/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Proteína ADAM17/genética , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Colitis Ulcerosa/microbiología , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Ratones , Microbiota , Filogenia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Índice de Severidad de la Enfermedad , Inhibidor Tisular de Metaloproteinasa-3/genética , Factor de Necrosis Tumoral alfa/genética
4.
Anal Bioanal Chem ; 411(12): 2697-2705, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30859269

RESUMEN

The present work is aimed to develop a simple, rapid, and cost-effective CE method for the determination of trimethylamine (TMA) from bacterial origin. Optimum separation of TMA from the other components of the bacterial culture was achieved using a fused silica capillary (27 cm × 75 µm ID) and a background electrolyte solution that consisted of 0.75 M formic acid at pH 2.05. Analytical characteristics of the proposed method were evaluated through the study of its specificity, linearity, precision, accuracy, robustness, and detection/quantitation limit values. The method was linear over the range 25-2000 µM (R2 = 0.9998). The LOD and LOQ were 9 µM and 27 µM, respectively. Intra-day and inter-day RSD were ≤ 0.24% and ≤ 1.3% for migration time, respectively. Intra-day and inter-day RSD for peak area were ≤ 2.44% and ≤ 3.51%, respectively. The method showed a good accuracy with recovery percentages ranging from 95.45 to 102.21%. The method was successfully applied for the determination of microbial conversion of L-carnitine to TMA. The method shows great potential in high-throughput screening applications to assess the functionality of the gut microbiota to produce TMA. Graphical abstract.


Asunto(s)
Análisis Costo-Beneficio , Electroforesis Capilar/métodos , Microbioma Gastrointestinal , Metilaminas/metabolismo , Bacterias/metabolismo , Electroforesis en Gel de Agar , Electroforesis Capilar/economía , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta
5.
Methods Mol Biol ; 1855: 303-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30426427

RESUMEN

The potential of capillary electrophoresis-mass spectrometry (CE-MS) for metabolomics is demonstrated through the analysis of metabolites from human HT29 colon cancer cells treated and non-treated with dietary polyphenols. Prior to CE-MS analysis, four different metabolite purification strategies are investigated. Namely, the results obtained after methanol deproteinization, ultrafiltration, and two solid-phase extraction methods using C18 and polymer-based cartridges are described. These generic methods can have broad applications to analyze metabolites in a large variety of matrices and fields, including the new Foodomics area.


Asunto(s)
Neoplasias del Colon/metabolismo , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Polifenoles/farmacología , Neoplasias del Colon/terapia , Alimentos Funcionales/análisis , Células HT29 , Humanos , Extracción en Fase Sólida/métodos
6.
Anal Chim Acta ; 1037: 140-151, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30292288

RESUMEN

Rosemary diterpenes have demonstrated diverse biological activities, such as anti-cancer, antiinflammatory, as well as other beneficial effects against neurological and metabolic disorders. In particular, carnosic acid (CA), carnosol (CS) and rosmanol (RS) diterpenes have shown interesting results on anti-cancer activity. However, little is known about the toxic effects of rosemary diterpenes at the concentrations needed to exert their antiproliferative effect on cancer cells. In our study, CA, CS and RS exhibited a concentration-dependent effect on cell viability of two human colon cancer cell lines (HT-29 and HCT116) after 24 h exposure. HT-29 cell line was more resistant to the inhibitory effect of the three diterpenes than HCT116 cell line. Among the three diterpenes, RS exerted the strongest effect in both cell lines. To investigate the hepatotoxicity of CA, CS and RS, undifferentiated and differentiated HepaRG cells were exposed to increasing concentrations of the diterpenes (from 10 to 100 µM). Differentiated cells were found to be more resistant to the toxic activity of the three diterpenes than undifferentiated HepaRG, probably related to a higher detoxifying function of differentiated HepaRG cells compared with the undifferentiated cells. The metabolic profiles of differentiated HepaRG cells in response to CA, CS and RS were examined to determine biochemical alterations and deepen the study of the effects of rosemary phenolic diterpenes at molecular level. A multiplatform metabolomics study based on liquid- and gas-chromatography hyphenated to high resolution mass spectrometry revealed that rosemary diterpenes exerted different effects when HepaRG cells were treated with the same concentration of each diterpene. RS revealed a greater metabolome alteration followed by CS and CA, in agreement with their observed cytotoxicity. Metabolomics provided valuable information about early events in the metabolic profiles after the treatment with the investigated diterpenes from rosemary.


Asunto(s)
Diterpenos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Metabolómica , Rosmarinus/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Liquida , Diterpenos/química , Cromatografía de Gases y Espectrometría de Masas , Células HCT116 , Células HT29 , Humanos
7.
J Proteome Res ; 17(4): 1624-1635, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29485285

RESUMEN

Moderate red-wine consumption has been widely described to exert several benefits in human health. This is mainly due to its unique content of bioactive polyphenols, which suffer several modifications along their pass through the digestive system, including microbial transformation in the colon and phase-II metabolism, until they are finally excreted in urine and feces. To determine the impact of moderate wine consumption in the overall urinary metabolome of healthy volunteers ( n = 41), samples from a red-wine interventional study (250 mL/day, 28 days) were investigated. Urine (24 h) was collected before and after intervention and analyzed by an untargeted ultrahigh-performance liquid chromatography-time-of-flight mass spectrometry metabolomics approach. 94 compounds linked to wine consumption, including specific wine components (tartaric acid), microbial-derived phenolic metabolites (5-(dihydroxyphenyl)-γ-valerolactones and 4-hydroxyl-5-(phenyl)-valeric acids), and endogenous compounds were identified. Also, some relationships between parallel fecal and urinary metabolomes are discussed.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/orina , Metaboloma , Metabolómica/métodos , Vino , Adulto , Cromatografía Líquida de Alta Presión , Voluntarios Sanos , Humanos , Espectrometría de Masas , Fenoles/análisis , Polifenoles/análisis , Orina/química
8.
Anal Chim Acta ; 986: 48-56, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28870325

RESUMEN

The increasing incidence of colorectal cancer enforces the development of novel methodologies and protocols to deepen in the molecular mechanisms that govern disease pathophysiological events. The aim of this work is to deepen in the optimum metabolite extraction protocol from adherent mammalian cells of colon cancer for high throughput metabolomics using gas chromatography coupled to mass spectrometry (GC-MS). GC-MS results showed that metabolic information obtained from colon cancer cells was highly dependent on metabolite extraction selection, which at the same time is extremely influenced by the analytical platform. A further purpose of this investigation is to uncover an unexplored portion of HT-29 colon cancer cells metabolome, complementary to other already explored by CE-MS and LC-MS methods. At this respect, a total of 150 metabolites were identified in HT-29 colon cancer cells by GC-MS. The extraction protocol with acetonitrile-isopropanol-water was the most appropriate for fatty acids and related pathways analysis. Most of the metabolites involved in pathways of amino acids, glutathione, amino sugars and other polar metabolites were better extracted with acidified water, although water extraction showed the best overall reproducibility. Although pathways involving nitrogenous bases could be investigated using organic or aqueous extracts, a higher number of metabolites involved in these pathways were identified in the aqueous extracts. In addition, metabolite extraction protocol was observed to be crucial for the determination of potentially interesting clusters of metabolites.


Asunto(s)
Neoplasias del Colon/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Solventes , Células HT29 , Humanos , Reproducibilidad de los Resultados
9.
Sci Rep ; 7(1): 10740, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878331

RESUMEN

Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in the inhibition of early signaling events and the production of the autocrine growth factor, interleukin-2. The fate of the CD4 T cells activated in the presence of Salp15 or its long-term effects are, however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished cross-antigenic antibody production even after interruption of the treatment with the protein. Transcriptionally, the salivary protein provokes an acute effect that includes known activation markers, such as Il2 or Cd44, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with Salp15 does not result in B cell anergy or the generation of myeloid suppressor cells. However, Salp15 induces the increased expression of the ectoenzyme, CD73, in regulatory T cells and increased production of adenosine. Our study provides a profound characterization of the immunomodulatory activity of Salp15 and suggests that its long-term effects are due to the specific regulation of CD73.


Asunto(s)
Tolerancia Inmunológica/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Inmunosupresores/farmacología , Proteínas y Péptidos Salivales/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Inmunoglobulina G/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcripción Genética
10.
PLoS One ; 12(6): e0178376, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575008

RESUMEN

OBJECTIVE: Charcot-Marie-Tooth 1A (CMT1A) disease is the most common inherited neuropathy that lacks of therapy and of molecular markers to assess disease severity. Herein, we have pursued the identification of potential biomarkers in plasma samples and skin biopsies that could define the phenotype of CMT1A patients at mild (Mi), moderate (Mo) and severe (Se) stages of disease as assessed by the CMT neuropathy score to contribute to the understanding of CMT pathophysiology and eventually inform of the severity of the disease. METHODS: We have used: (i) a high-throughput untargeted metabolomic approach of plasma samples in a cohort of 42 CMT1A patients and 15 healthy controls (CRL) using ultrahigh liquid chromatography coupled to mass spectrometry and (ii) reverse phase protein microarrays to quantitate the expression of some proteins of energy metabolism and of the antioxidant response in skin biopsies of a cohort of 70 CMT1A patients and 13 healthy controls. RESULTS: The metabolomic approach identified 194 metabolites with significant differences among the four groups (Mi, Mo, Se, CRL) of samples. A multivariate Linear Discriminant Analysis model using 12 metabolites afforded the correct classification of the samples. These metabolites indicate an increase in protein catabolism and the mobilization of membrane lipids involved in signaling inflammation with severity of CMT1A. A concurrent depletion of leucine, which is required for the biogenesis of the muscle, is also observed in the patients. Protein expression in skin biopsies indicates early loss of mitochondrial and antioxidant proteins in patients' biopsies. CONCLUSION: The findings indicate that CMT1A disease is associated with a metabolic state resembling inflammation and sarcopenia suggesting that it might represent a potential target to prevent the nerve and muscle wasting phenotype in these patients. The observed changes in metabolites could be useful as potential biomarkers of CMT1A disease after appropriate validation in future longitudinal studies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/sangre , Enfermedad de Charcot-Marie-Tooth/metabolismo , Metaboloma , Proteínas/análisis , Piel/patología , Adulto , Biomarcadores/análisis , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Metabolismo Energético , Humanos , Metabolómica , Persona de Mediana Edad , Estudios Prospectivos , Proteínas/metabolismo , Piel/metabolismo
11.
J Chromatogr A ; 1492: 98-105, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28267998

RESUMEN

Separation techniques hyphenated with high-resolution mass spectrometry have been a true revolution in analytical separation techniques. Such instruments not only provide unmatched resolution, but they also allow measuring the peaks accurate masses that permit identifying monoisotopic formulae. However, data files can be large, with a major contribution from background noise and background ions. Such unnecessary contribution to the overall signal can hide important features as well as decrease the accuracy of the centroid determination, especially with minor features. Thus, noise and baseline correction can be a valuable pre-processing step. The methodology that is described here, unlike any other approach, is used to correct the original dataset with the MS scans recorded as profiles spectrum. Using urine metabolic studies as examples, we demonstrate that this thorough correction reduces the data complexity by more than 90%. Such correction not only permits an improved visualisation of secondary peaks in the chromatographic domain, but it also facilitates the complete assignment of each MS scan which is invaluable to detect possible comigration/coeluting species.


Asunto(s)
Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión , Iones/química , Peso Molecular
12.
Mol Cell Proteomics ; 16(1): 8-22, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834734

RESUMEN

Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (Rosmarinus officinalis). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.


Asunto(s)
Abietanos/farmacología , Cromatografía Liquida/métodos , Neoplasias del Colon/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Homeostasis/efectos de los fármacos , Humanos , Marcaje Isotópico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
13.
Methods Mol Biol ; 1483: 471-507, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27645749

RESUMEN

Quality and safety assessment as well as the evaluation of other nutritional and functional properties of foods imply the use of robust, efficient, sensitive, and cost-effective analytical methodologies. Among analytical technologies used in the fields of food analysis and foodomics, capillary electrophoresis (CE) has generated great interest for the analyses of a large number of compounds due to its high separation efficiency, extremely small sample and reagent requirements, and rapid analysis. The introductory section of this chapter provides an overview of the recent applications of capillary electrophoresis (CE) in food analysis and foodomics. Relevant reviews and research articles on these topics are tabulated including papers published in the period 2011-2014. In addition, to illustrate the great capabilities of CE in foodomics the chapter describes the main experimental points to be taken into consideration for a metabolomic study of the antiproliferative effect of carnosic acid (a natural diterpene found in rosemary) against HT-29 human colon cancer cells.


Asunto(s)
Electroforesis Capilar/métodos , Análisis de los Alimentos/métodos , Metabolómica/métodos , Células HT29 , Humanos , Espectrometría de Masas/métodos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
14.
Electrophoresis ; 37(13): 1795-804, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26842614

RESUMEN

A number of studies have demonstrated a strong association between the antioxidant properties of rosemary polyphenols and their chemoprotective activity. However, the prooxidant effects of rosemary polyphenols have been rarely reported. In this work, a foodomics study is performed to investigate the in vitro autooxidation of carnosic acid (CA), carnosol (CS) and a polyphenol-enriched rosemary extract (SC-RE) in cell culture conditions. The results revealed that rosemary polyphenols autooxidation in culture medium generated H2 O2 at different rates. Generated H2 O2 levels by SC-RE and CA, but not CS, were correlated with intracellular reactive oxygen species (ROS) generation in HT-29 cells, and were partially involved in their anti-proliferative effect in this cell line. These compounds also induced different effects on glutathione metabolism. Results also indicated that high extracellular H2 O2 concentrations, resulting of using high (45 µg/mL) SC-RE concentration in culture media, exerted some artifactual effects related with cell cycle, but they did not influence the expression of relevant molecular biomarkers of stress.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Análisis de los Alimentos , Peróxido de Hidrógeno/metabolismo , Polifenoles/farmacología , Rosmarinus/química , Ciclo Celular/efectos de los fármacos , Medios de Cultivo , Células HT29 , Humanos , Especies Reactivas de Oxígeno/metabolismo
15.
J Chromatogr A ; 1428: 326-35, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26296988

RESUMEN

In several metabolomic studies, it has already been demonstrated that capillary electrophoresis hyphenated to mass spectrometry (CE-MS) can detect an important group of highly polar and ionized metabolites that are overseen by techniques such as NMR, LC-MS and GC-MS, providing complementary information. In this work, we present a strategy for anionic metabolite profiling by CE-MS using a cationic capillary coating. The polymer, abbreviated as PTH, is composed of a poly-(N,N,N',N'-tetraethyldiethylenetriamine, N-(2-hydroxypropyl) methacrylamide, TEDETAMA-co-HPMA (50:50) copolymer. A CE-MS method based on PTH-coating was optimized for the analysis of a group of 16 standard anionic metabolites. Separation was achieved within 12min, with high separation efficiency (up to 92,000 theoretical plates per meter), and good repeatability, namely, relative standard deviation values for migration times and peak areas were below 0.2 and 2.1%, respectively. The optimized method allowed the detection of 87 metabolites in orange juice and 142 metabolites in red wine, demonstrating the good possibilities of this strategy for metabolomic applications.


Asunto(s)
Aniones/química , Citrus sinensis/química , Electroforesis Capilar , Análisis de los Alimentos/métodos , Jugos de Frutas y Vegetales/análisis , Espectrometría de Masas , Metabolómica/métodos , Polímeros/química , Vino/análisis
16.
Electrophoresis ; 37(1): 111-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26256797

RESUMEN

This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2013-February 2015 are included following the previous review by Garcia-Cañas et al. (Electrophoresis, 2014, 35, 147-169). Analysis by CE of a large variety of food-related molecules with different chemical properties, including amino acids, hazardous amines, peptides, proteins, phenols, polyphenols, lipids, carbohydrates, DNAs, vitamins, toxins, contaminants, pesticides, residues, food additives, as well as small organic and inorganic compounds. This work includes recent results on food quality and safety, nutritional value, storage, bioactivity, as well as applications of CE for monitoring food processing. The use, among other CE developments, of microchips, CE-MS, and chiral CE in food analysis and Foodomics is also discussed.


Asunto(s)
Electroforesis Capilar , Análisis de los Alimentos/métodos , Electroforesis Capilar/métodos , Electroforesis Capilar/tendencias
17.
J Chromatogr A ; 1429: 134-41, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26711157

RESUMEN

Various algorithms have been developed to improve the quantity and quality of information that can be extracted from complex datasets obtained using hyphenated mass spectrometric techniques. While different approaches are possible, the key step often consists in arranging the data into a large series of profiles known as extracted ion profiles. Those profiles, similar to mono-dimensional separation profiles, are then processed to detect potential chromatographic peaks. This allows extracting from the dataset a large number of peaks that are characteristics of the compounds that have been separated. However, with mass spectrometry (MS) detection, the response is usually a complex signal whose pattern depends on the analyte, the MS instrument and the ionization method. When converted to ionic profiles, a single separated analyte will have multiple images at different m/z range. In this manuscript we present a hierarchical agglomerative clustering algorithm to group profiles with very similar feature. Each group aims to contain all profiles that are due to the transport and monitoring of a single analyte. Clustering results are then used to generate a 2 dimensional representation, called clusters plot, which allows an in-depth analysis of the MS dataset including the visualization of poorly separated compounds even when their intensity differs by more than two orders of magnitude. The usefulness of this new approach has been validated with data from capillary electrophoresis time of flight mass spectrometry hyphenated via an electrospray ionization. Using a mixture of 17 low molecular endogenous compounds it was verified that ionic profiles belonging to each compounds were correctly clustered even with very low degree of separation (R below 0.03). The approach was also validated using a urine sample. While with the total ion profile 15 peaks could be distinguished, 70 clusters were obtained allowing a much thorough analysis. In this particular example, the total computing took less than 10 min.


Asunto(s)
Algoritmos , Técnicas de Química Analítica/métodos , Análisis por Conglomerados , Iones/química , Espectrometría de Masas , Electroforesis Capilar
18.
Int Rev Neurobiol ; 122: 95-132, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26358892

RESUMEN

Metabolomics is gaining an important role in the investigation of neurological pathologies such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis which are characterized by the absence of reliable diagnostic markers. The magnitude of emotional, physical, and financial burden related to these three devastating pathologies can be deduced considering that nearly 20 million people worldwide suffer from these three pathologies. In this chapter, an overview of the recent advances and applications of metabolomics to investigate these major neurodegenerative diseases will be presented. Metabolomics strategies are now being developed to map potential perturbations in biochemical pathways linked to neurodegeneration. Going further, there is more and more evidence supporting the concept that these pathologies can begin years or even decades before the onset of clinical symptoms, and thus, metabolomics is also increasingly being used to discover preclinical biomarkers of these neurological diseases.


Asunto(s)
Metabolómica , Enfermedades Neurodegenerativas/metabolismo , Biomarcadores/metabolismo , Humanos
19.
Anal Bioanal Chem ; 407(21): 6275-87, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26143059

RESUMEN

Foodomics has been defined as a global discipline in which advanced analytical techniques and bioinformatics are combined to address different questions in food science and nutrition. There is a growing number of works on the development and application of non-targeted omics methods in foodomics, which reflects that this emerging discipline is already considered by the scientific community to be a valuable approach to assess food safety, quality, and traceability as well as for the study of the links between food and health. As a result, there is a clear need for more rapid, high-throughput MS approaches for developing and applying non-targeted studies. Nowadays, direct MS analysis is one of the main choices to achieve high throughput, generating a set of information from the largest possible number of samples in a fast and straightforward way. The use of high- and ultrahigh-resolution MS greatly improves the analytical performance and offers a good combination of selectivity and sensitivity. By using a range of methods for direct sample introduction/desorption/ionization, high-throughput and non-target analysis of a variety of samples can be obtained in a few seconds by HRMS analysis. In this review, a general overview is presented of the main characteristics of direct HRMS-based approaches and their principal applications in foodomics.


Asunto(s)
Análisis de los Alimentos , Espectrometría de Masas/métodos
20.
Electrophoresis ; 36(14): 1564-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25820626

RESUMEN

In this work, the suitability of a new polymer family has been investigated as capillary coatings for the analysis of peptides and basic proteins by CE. This polymer family has been designed to minimize or completely prevent protein-capillary wall interactions and to modify the EOF. These coating materials are linear polymeric chains bearing as side cationizable moiety a dentronic triamine derived from N,N,N',N'-tetraethyldiethylenetriamine (TEDETA), which is linked to the backbone through a spacer (unit labeled as TEDETAMA). Four different polymers have been prepared and evaluated: a homopolymer which comprised only of those cationizable repetitive units of TEDETAMA, and three copolymers that randomly incorporate TEDETAMA together with neutral hydrosoluble units of N-(2-hydroxypropyl) methacrylamide (HPMA) at different molar percentages (25:75, 50:50 and 75:25). It has been demonstrated that the composition of the copolymers influences the EOF and therefore the separation of the investigated biopolymers. Among the novel polymers studied, poly-(TEDETAMA-co-HPMA) 50:50 copolymer was successfully applied as coating material of the inner capillary surface in CE-UV and CE-MS, providing EOF reversing together with fast and efficient baseline separation of peptides and basic proteins. Finally, the feasibility of the polymer-coated capillary was shown through the analysis of lysozyme in a cheese sample.


Asunto(s)
Dendrímeros/química , Electroforesis Capilar/métodos , Péptidos/aislamiento & purificación , Poliaminas/química , Proteínas/aislamiento & purificación , Animales , Bovinos , Caballos , Espectrometría de Masas/métodos , Péptidos/análisis , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...