Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37239000

RESUMEN

Systemic sclerosis (SSc) is an immune-mediated disease wherein T cells are particularly implicated, presenting a poor prognosis and limited therapeutic options. Thus, mesenchymal-stem/stromal-cell (MSC)-based therapies can be of great benefit to SSc patients given their immunomodulatory, anti-fibrotic, and pro-angiogenic potential, which is associated with low toxicity. In this study, peripheral blood mononuclear cells from healthy individuals (HC, n = 6) and SSc patients (n = 9) were co-cultured with MSCs in order to assess how MSCs affected the activation and polarization of 58 different T cell subsets, including Th1, Th17, and Treg. It was found that MSCs downregulated the activation of 26 out of the 41 T cell subsets identified within CD4+, CD8+, CD4+CD8+, CD4-CD8-, and γδ T cells in SSc patients (HC: 29/42) and affected the polarization of 13 out of 58 T cell subsets in SSc patients (HC: 22/64). Interestingly, SSc patients displayed some T cell subsets with an increased activation status and MSCs were able to downregulate all of them. This study provides a wide-ranging perspective of how MSCs affect T cells, including minor subsets. The ability to inhibit the activation and modulate the polarization of several T cell subsets, including those implicated in SSc's pathogenesis, further supports the potential of MSC-based therapies to regulate T cells in a disease whose onset/development may be due to immune system's malfunction.

2.
Stem Cell Res Ther ; 11(1): 177, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32408888

RESUMEN

BACKGROUND: Since cartilage-derived stem/progenitor cells (CSPCs) were first identified in articular cartilage using differential adhesion to fibronectin, their self-renewal capacity and niche-specific lineage preference for chondrogenesis have propelled their application for cartilage tissue engineering. In many adult tissues, stem/progenitor cells are recognised to be involved in tissue homeostasis. However, the role of nasoseptal CSPCs has not yet been elucidated. Our aim was to isolate and characterise nasoseptal CSPCs alongside nasoseptal chondrocyte populations and determine chondrogenic capacity. METHODS: Here, we isolated nasoseptal CSPCs using differential adhesion to fibronectin and assessed their colony forming efficiency, proliferation kinetics, karyotype and trilineage potential. CSPCs were characterised alongside non-fibronectin-adherent nasoseptal chondrocytes (DNCs) and cartilage-derived cells (CDCs, a heterogenous combination of DNCs and CSPCs) by assessing differences in gene expression profiles using PCR Stem Cell Array, immunophenotype using flow cytometry and chondrogencity using RT-PCR and histology. RESULTS: CSPCs were clonogenic with increased gene expression of the neuroectodermal markers NCAM1 and N-Cadherin, as well as Cyclins D1 and D2, compared to DNCs. All three cell populations expressed recognised mesenchymal stem cell surface markers (CD29, CD44, CD73, CD90), yet only CSPCs and CDCs showed multilineage differentiation potential. CDC populations expressed significantly higher levels of type 2 collagen and bone morphogenetic protein 2 genes, with greater cartilage extracellular matrix secretion. When DNCs were cultured in isolation, there was reduced chondrogenicity and higher expression of type 1 collagen, stromal cell-derived factor 1 (SDF-1), CD73 and CD90, recognised markers of a fibroblast-like phenotype. CONCLUSIONS: Fibronectin-adherent CSPCs demonstrate a unique gene expression profile compared to non-fibronectin-adherent DNCs. DNCs cultured in isolation, without CSPCs, express fibroblastic phenotype with reduced chondrogenicity. Mixed populations of stem/progenitor cells and chondrocytes were required for optimal chondrogenesis, suggesting that CSPCs may be required to retain phenotypic stability and chondrogenic potential of DNCs. Crosstalk between DNCs and CSPCs is proposed based on SDF-1 signalling.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Diferenciación Celular , Células Cultivadas , Condrocitos , Condrogénesis/genética , Células Madre
3.
Sci Rep ; 10(1): 4648, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157206

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 12464, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462660

RESUMEN

Nasoseptal cartilage has been assumed to be isotropic, unlike the well-defined zonal organization of articular cartilage attributed to postnatal biomechanical loading. We know from clinical experience that malrotation of surgical nasoseptal cartilage grafts can lead to increased graft absorption. Other studies have also suggested directionally dependent compressive stiffness suggesting anisotropy, but morphological investigations are lacking. This study characterizes immature and mature native bovine nasoseptal cartilage using a combination of immunohistochemistry, biomechanical testing and structural imaging. Our findings indicate that there is extensive postnatal synthesis and reorganization of the extracellular matrix in bovine nasoseptal cartilage, independent of joint loading forces responsible for articular cartilage anisotropy. Immature nasoseptal cartilage is more cellular and homogenous compared to the zonal organization of cells and extracellular matrix of mature cartilage. Mature samples also exhibited greater glycosaminoglycan content and type II collagen fibre alignment compared to immature cartilage and this correlates with greater compressive stiffness. Engineered neocartilage often consists of immature, isotropic, homogenous tissue that is unable to meet the functional and mechanical demands when implanted into the native environment. This study demonstrates the importance of anisotropy on biomechanical tissue strength to guide future cartilage tissue engineering strategies for surgical reconstruction.


Asunto(s)
Cartílago/citología , Cartílago/metabolismo , Colágeno Tipo II/metabolismo , Fuerza Compresiva , Tabique Nasal/citología , Tabique Nasal/metabolismo , Animales , Anisotropía , Cartílago/cirugía , Bovinos , Tabique Nasal/cirugía
5.
Carbohydr Polym ; 212: 242-251, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30832854

RESUMEN

Nanocellulose is a natural biopolymer derived from cellulose. Combined with sodium alginate, it is used to 3D print hydrogels for articular and nasal cartilage engineering and shows good integration, promising cartilage regeneration and mechanical stability over 60 days of implantation in mice. Yet, little is known about their structural and mechanical properties, particularly the impact of crosslinking and sterilisation methods. This study investigates the impact of different calcium chloride crosslinker concentrations and sterilization methods on the structural and mechanical properties of nanocellulose-based hydrogels containing plant-derived cellulose nanofibrils, cellulose nanocrystals or a blend of the two. Crosslinking significantly alters the overall network distribution, surface morphology, pore size and porosity of the hydrogels. Sterilisation has a striking effect on pore size and affects swelling depending on the sterilisation method. The effect of crosslinker and sterilisation on the overall properties of the hydrogels was reliant on the form of nanocellulose that comprised them.

6.
Sci Rep ; 7: 41934, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165009

RESUMEN

Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue's DNA, generally preserving ECM's components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products.


Asunto(s)
Matriz Extracelular/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Uretra/citología , Uretra/fisiología , Animales , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Masculino , Porcinos
7.
PLoS One ; 10(10): e0139870, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26479722

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells have unique properties favorable to their use in clinical practice and have been studied for cardiac repair. However, these cells are larger than coronary microvessels and there is controversy about the risk of embolization and microinfarctions, which could jeopardize the safety and efficacy of intracoronary route for their delivery. The index of microcirculatory resistance (IMR) is an invasive method for quantitatively assessing the coronary microcirculation status. OBJECTIVES: To examine heart microcirculation after intracoronary injection of mesenchymal stem/stromal cells with the index of microcirculatory resistance. METHODS: Healthy swine were randomized to receive by intracoronary route either 30x106 MSC or the same solution with no cells (1% human albumin/PBS) (placebo). Blinded operators took coronary pressure and flow measurements, prior to intracoronary infusion and at 5 and 30 minutes post-delivery. Coronary flow reserve (CFR) and the IMR were compared between groups. RESULTS: CFR and IMR were done with a variance within the 3 transit time measurements of 6% at rest and 11% at maximal hyperemia. After intracoronary infusion there were no significant differences in CFR. The IMR was significantly higher in MSC-injected animals (at 30 minutes, 14.2U vs. 8.8U, p = 0.02) and intragroup analysis showed a significant increase of 112% from baseline to 30 minutes after cell infusion, although no electrocardiographic changes or clinical deterioration were noted. CONCLUSION: Overall, this study provides definitive evidence of microcirculatory disruption upon intracoronary administration of mesenchymal stem/stromal cells, in a large animal model closely resembling human cardiac physiology, function and anatomy.


Asunto(s)
Circulación Coronaria , Vasos Coronarios/citología , Vasos Coronarios/fisiología , Trasplante de Células Madre Mesenquimatosas , Microcirculación , Animales , Femenino , Hemodinámica , Humanos , Masculino , Porcinos
8.
Biotechnol J ; 8(4): 448-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23420807

RESUMEN

Mesenchymal stem cells (MSC) could potentially be applied in therapeutic settings due to their multilineage differentiation ability, immunomodulatory properties, as well as their trophic activity. The umbilical cord matrix (UCM) represents a promising source of MSC for biomedical applications. The number of cells isloated per umbilical cord (UC) unit is limited and ex vivo expansion is imperative in order to reach clinically meaningful cell numbers. The limitations of poorly defined reagents (e.g. fetal bovine serum, which is commonly used as a supplement for human MSC expansion) make the use of serum-/xeno-free conditions mandatory. We demonstrated the feasibility of isolating UCM-MSC by plastic adherence using serum-/xeno-free culture medium following enzymatic digestion of UCs, with a 100% success rate. 2.6 ± 0.21 × 10(5) cells were isolated per UC unit, of which 1.9 ± 0.21 × 10(5) were MSC-like cells expressing CD73, CD90, and CD105. When compared to adult sources (bone marrow-derived MSC and adipose-derived stem/stromal cells), UCM-MSC displayed a similar immunophenotype and similar multilineage differentiation ability, while demonstrating a higher expansion potential (average fold increase of 7.4 for serum-containing culture medium and 11.0 for xeno-free culture medium (P3-P6)). The isolation and expansion of UCM-MSC under defined serum-/xeno-free conditions contributes to safer and more effective MSC cellular products, boosting the usefulness of MSC in cellular therapy and tissue engineering.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Antígenos CD/biosíntesis , Procesos de Crecimiento Celular/fisiología , Medio de Cultivo Libre de Suero , Estudios de Factibilidad , Humanos , Inmunofenotipificación , Cinética , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/metabolismo , Estadísticas no Paramétricas , Cordón Umbilical/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...