Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 199(5): 657-664, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28180951

RESUMEN

Thirteen Gram-negative, aerobic, motile with polar flagella, rod-shaped bacteria were isolated from root nodules of Centrolobium paraense Tul. grown in soils from the Amazon region of Brazil. Growth of strains was observed at temperature range 20-36 °C (optimal 28 °C), pH ranges 5-11 (optimal 6.0-7.0), and 0.1-0.5%NaCl (optimal 0.1-0.3%). Analysis of 16S rRNA gene placed the strains into two groups within Bradyrhizobium. Closest neighbouring species (98.8%) for group I was B. neotropicale while for group II were 12 species with more than 99% of similarity. Multi-locus sequence analysis (MLSA) with dnaK, glnII, recA, and rpoB confirmed B. neotropicale BR 10247T as the closest type strain for the group I and B. elkanii USDA 76T and B. pachyrhizi PAC 48T for group II. Average Nucleotide Identity (ANI) differentiated group I from the B. neotropicale BR 10247T (79.6%) and group II from B. elkanii USDA 76T and B. pachyrhizi PAC 48T (88.1% and 87.9%, respectively). Fatty acid profiles [majority C16:0 and Summed feature 8 (18:1ω6c/18:1ω7c) for both groups], DNA G + C content, and carbon compound utilization supported the placement of the novel strains in the genus Bradyrhizobium. Gene nodC and nifH of the new strains have in general low similarity with other Bradyrhizobium species. Both groups nodulated plants from the tribes Crotalarieae, Dalbergiae, Genisteae, and Phaseoleae. Based on the presented data, two novel species which the names Bradyrhizobium centrolobii and Bradyrhizobium macuxiense are proposed, with BR 10245T (=HAMBI 3597T) and BR 10303T (=HAMBI 3602T) as the respective-type strains.


Asunto(s)
Bradyrhizobium , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/genética , Composición de Base/genética , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Brasil , ADN Bacteriano/genética , Ácidos Grasos/química , Tipificación de Secuencias Multilocus , N-Acetilglucosaminiltransferasas/genética , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Hibridación de Ácido Nucleico , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
2.
Front Microbiol ; 7: 1572, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27774087

RESUMEN

Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and provides evidence for the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA. Furthermore, we showed that the mutant strains with reduction in IAA biosynthesis ability, in consequence of the lower transcription levels of genes of the lao cluster, had remarkable effects on development of rice roots.

3.
Int J Syst Evol Microbiol ; 66(10): 4118-4124, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27453319

RESUMEN

Root nodule bacteria were isolated from nodules on Mimosa pudica L. growing in neutral-alkaline soils from the Distrito Federal in central Brazil. The 16S rRNA gene sequence analysis of 10 strains placed them into the genus Rhizobium with the closest neighbouring species (each with 99 % similarity) being Rhizobium grahamii, Rhizobium cauense, Rhizobium mesoamericanum and Rhizobium tibeticum. This high similarity, however, was not confirmed by multi-locus sequence analysis (MLSA) using three housekeeping genes (recA, glnII and rpoB), which revealed R. mesoamericanum CCGE 501T to be the closest type strain (92 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [with majority being C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c)], DNA G+C content (57.6 mol%), and carbon compound utilization patterns supported the placement of the novel strains in the genus Rhizobium. Results of average nucleotide identity (ANI) differentiated the novel strains from the closest species of the genus Rhizobium, R. mesoamericanum, R. grahamii and R. tibeticum with 89.0, 88.1 and 87.8 % similarity, respectively. The symbiotic genes essential for nodulation (nodC) and nitrogen fixation (nifH) were most similar (99-100 %) to those of R. mesoamericanum, another Mimosa-nodulating species. Based on the current data, these 10 strains represent a novel species of the genus Rhizobium for which the name Rhizobium altiplani sp. nov. is proposed. The type strain is BR 10423T (=HAMBI 3664T).


Asunto(s)
Mimosa/microbiología , Filogenia , Rhizobium/clasificación , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Análisis de Secuencia de ADN , Suelo/química , Simbiosis
4.
Int J Syst Evol Microbiol ; 64(Pt 7): 2358-2363, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24744018

RESUMEN

Root nodule bacteria were trapped within cowpea (Vigna unguiculata) in soils with different cultivation histories collected from the Amazonian rainforest in northern Brazil. Analysis of the 16S rRNA gene sequences of six strains (BR 3351(T), BR 3307, BR 3310, BR 3315, BR 3323 BR and BR 3361) isolated from cowpea nodules showed that they formed a distinct group within the genus Bradyrhizobium, which was separate from previously identified type strains. Phylogenetic analyses of three housekeeping genes (glnII, recA and rpoB) revealed that Bradyrhizobium huanghuaihaiense CCBAU 23303(T) was the most closely related type strain (96% sequence similarity or lower). Chemotaxonomic data, including fatty acid profiles (predominant fatty acids being C16 : 0 and summed feature 8), the slow growth rate and carbon compound utilization patterns supported the assignment of the strains to the genus Bradyrhizobium. The results of DNA-DNA hybridizations, antibiotic resistance and physiological tests differentiated these novel strains from the most closely related species of the genus Bradyrhizobium with validly published names. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped the novel strains of the genus Bradyrhizobium together with Bradyrhizobium iriomotense strain EK05(T), with 94% and 96% sequence similarity, respectively. Based on these data, these six strains represent a novel species for which the name Brabyrhizobium manausense sp. nov. (BR 3351(T) = HAMBI 3596(T)), is proposed.


Asunto(s)
Bradyrhizobium/clasificación , Fabaceae/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Brasil , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Datos de Secuencia Molecular , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
5.
PLoS One ; 7(11): e49520, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185349

RESUMEN

The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N(2)-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N(2) fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N(2)-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii.


Asunto(s)
Fabaceae/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas Bacterianas/metabolismo , Biomasa , Bradyrhizobium/metabolismo , Brasil , ADN Intergénico , Epítopos/química , Funciones de Verosimilitud , Microscopía Electrónica de Transmisión/métodos , Nitrógeno/química , Oxidorreductasas/metabolismo , Pectinas/química , Filogenia , Raíces de Plantas/metabolismo , Suelo , Microbiología del Suelo , Factores de Tiempo
6.
J Microbiol Methods ; 91(1): 1-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22814372

RESUMEN

Gluconacetobacter diazotrophicus strain PAL5 is a nitrogen-fixing endophytic bacterium originally isolated from sugarcane and later on was found to colonize other plants such as rice, elephant grass, sweet potato, coffee, and pineapple. Currently, G. diazotrophicus has been considered a plant growth-promoting bacterium due to its characteristics of biological nitrogen fixation, phytohormone secretion, solubilization of mineral nutrients and antagonism to phytopathogens. Reverse transcription followed by quantitative real-time polymerase chain reaction (RT-qPCR) is a method applied for the quantification of nucleic acids because of its specificity and high sensitivity. However, the decision about the reference genes suitable for data validation is still a major issue, especially for nitrogen-fixing bacteria. To evaluate and identify suitable reference genes for gene expression normalization in the diazotrophic G. diazotrophicus, mRNA levels of fourteen candidate genes (rpoA, rpoC, recA, rpoD, fabD, gmk, recF, rho, ldhD, gyrB, gyrBC, dnaG, lpxC and 23SrRNA) and three target genes (matE, omp16 and sucA) were quantified by RT-qPCR after growing the bacteria in different carbon sources. The geNorm and Normfinder programs were used to calculate the expression stabilities. The analyses identified three genes, rho, 23SrRNA and rpoD, whose expressions were stable throughout the growth of strain PAL5 in the chosen carbon sources. In conclusion our results strongly suggest that these three genes are suitable to be used as reference genes for real-time RT-qPCR data normalization in G. diazotrophicus.


Asunto(s)
Carbono/metabolismo , Perfilación de la Expresión Génica/métodos , Gluconacetobacter/genética , Gluconacetobacter/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Perfilación de la Expresión Génica/normas , Genes Bacterianos , Gluconacetobacter/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa/normas
7.
Mol Plant Microbe Interact ; 24(12): 1448-58, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21809982

RESUMEN

The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Genes Bacterianos/genética , Gluconacetobacter/metabolismo , Oryza/microbiología , Polisacáridos Bacterianos/metabolismo , Endófitos , Prueba de Complementación Genética , Genoma Bacteriano/genética , Gluconacetobacter/genética , Gluconacetobacter/fisiología , Proteínas Fluorescentes Verdes , Hidroponía , Familia de Multigenes , Mutagénesis Insercional , Fijación del Nitrógeno , Raíces de Plantas/microbiología , Polisacáridos Bacterianos/aislamiento & purificación , Plantones/microbiología , Simbiosis
8.
Arch Microbiol ; 189(4): 397-405, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18060666

RESUMEN

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium, which was originally isolated from the interior of sugarcane plants. The genome of strain PAL5 of G. diazotrophicus has been completely sequenced and a next step is the functional characterization of its genes. The aim of this study was to establish an efficient mutagenesis method, using the commercial Tn5 transposon EZ::Tn5Tnp Transposome (Epicentre). Up to 1 x 10(6) mutants per microgram of transposome were generated in a single electroporation experiment. Insertion-site flanking sequences were amplified by inverse PCR and sequenced for 31 mutants. For ten of these mutants, both insertion flanks could be identified, confirming the 9 bp duplication that is typical for Tn5 transposition. Insertions occurred in a random fashion and were genetically stable for at least 50 generations. One mutant had an insertion in a homolog of the flagellar gene flgA, and was therefore predicted to be affected in flagella-dependent traits and used to validate the applied mutagenesis methodology. This mutant lacked flagella and was non-motile on soft agar. Interestingly, it was also strongly affected in the ability to form biofilm on glass wool.


Asunto(s)
Acetobacteraceae/genética , Elementos Transponibles de ADN , Flagelos/genética , Mutagénesis Insercional , Acetobacteraceae/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Cromosomas Bacterianos/genética , Electroporación , Flagelos/metabolismo , Datos de Secuencia Molecular , Fenotipo , Reacción en Cadena de la Polimerasa
9.
Appl Environ Microbiol ; 71(11): 7461-71, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16269788

RESUMEN

Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other beta-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known beta-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.


Asunto(s)
Burkholderia/clasificación , Mimosa/microbiología , Fijación del Nitrógeno , Simbiosis , Aciltransferasas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Brasil , Burkholderia/crecimiento & desarrollo , Datos de Secuencia Molecular , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Mapeo Restrictivo , Análisis de Secuencia de ADN , América del Sur , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA