Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741263

RESUMEN

Staphylococcus aureus is an important pathogen that causes nosocomial infections, resulting in unacceptable morbidity and mortality rates. In this work, we proposed the construction of a nanostructured ZnO-based electrochemical immunosensor for qualitative and semiquantitative detection of S. aureus using simple methods for growing zinc oxide nanorods (ZnO NRs) on a sensor board and immobilizing the anti-S. aureus antibody on ZnO NRs through cystamine and glutaraldehyde. The immunosensor detected S. aureus in the 103-107 colony-forming unit (CFU) mL-1 range and showed a limit of detection (LoD) around 0.792 × 103 CFU mL-1. Beyond a satisfactory LoD, the developed immunosensor presented other advantages, such as high versatility for point-of-care assays and a suitable selective factor that admits the detection of the S. aureus concentration range in human hand skin after washing. Moreover, the immunosensor showed the potential to be an excellent device to control nosocomial infection by detecting the presence of S. aureus in human hand skin.

2.
Crit Rev Oncol Hematol ; 196: 104287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342473

RESUMEN

The advent of CRISPR/Cas9 technology has revolutionized the genome editing field. CRISPR-based libraries have become powerful tools for high-throughput functional genomics and genetic screening. CRISPR-based libraries can represent a powerful approach to uncovering genes related to chemoresistance and therapy efficacy and to studying cancer cells' fitness. In this review, we conducted an extensive literature search and summarized multiple studies that utilized these libraries in both in vitro and in vivo research, emphasizing their key findings. We provide an overview of the design, construction, and applications of CRISPR-based libraries in different cancer-focused studies and discuss the different types of CRISPR-based libraries. We finally point out the challenges associated with library design, including guide RNA selection, off-target effects, and library complexity. This review provides an overview of the work conducted with CRISPR libraries in the search for new targets that could potentially assist in cancer therapy by contributing to functional approaches.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , ARN Guía de Sistemas CRISPR-Cas , Edición Génica , Biblioteca de Genes , Neoplasias/genética , Neoplasias/terapia
4.
Foods ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37685216

RESUMEN

Sunflower (Helianthus annuus L.) and African palm kernel (Elaeis guineensis Jacq.) are among the most cultivated in the world regarding oil extraction. The oil industry generates a large amount of meal as a by-product, which can be a source of nutrients and bioactive compounds. However, the physiological effects of bioactive compounds in such matrices are only valid if they remain bioavailable and bioactive after simulated gastrointestinal digestion. This study evaluated the chemical composition and antioxidant and prebiotic potential of de-oiled sunflower (DS) and de-oiled palm kernel (DP) meal after in vitro digestion. The DS sample had the highest protein content and the best chemical score, in which lysine was the limiting amino acid. Digested samples showed increased antioxidant activity, measured by in vitro methods. The digested DS sample showed a better antioxidant effect compared to DP. Moreover, both samples managed to preserve DNA supercoiling in the presence of the oxidizing agent. The insoluble fractions after digestion stimulated the growth of prebiotic bacterium, similar to inulin. In conclusion, simulated gastrointestinal digestion promoted in both matrices an increase in protein bioaccessibility and antioxidant capacity, pointing to a metabolic modulation favorable to the organism.

5.
PLoS One ; 18(7): e0289100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37490507

RESUMEN

The M2-2 protein from the respiratory syncytial virus (RSV) is a 10 kDa protein expressed by the second ORF of the viral gene M2. During infection, M2-2 has been described as the polymerase cofactor responsible for promoting genome replication, which occurs by the induction of changes in interactions between the polymerase and other viral proteins at early stages of infection. Despite its well-explored role in the regulation of the polymerase activity, little has been made to investigate the relationship of M2-2 with cellular proteins. A previous report showed poor recruitment of M2-2 to viral structures, with the protein being mainly localized to the nucleus and cytoplasmic granules. To unravel which other functions M2-2 exerts during infection, we performed proteomic analysis of co-immunoprecipitated cellular partners, identifying enrichment of proteins involved with regulation of translation, protein folding and mRNA splicing. In approaches based on these data, we found that M2-2 expression downregulates eiF2α phosphorylation and inhibits both translation and stress granules assembly. Finally, we also verified that M2-2 is targeted for proteasome degradation, being localized to granules composed of defective ribosomal products at the cytoplasm. These results suggest that besides its functions in the replicative complex, M2-2 may exert additional functions to contribute to successful RSV infection.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Virus Sincitial Respiratorio Humano , Proteómica , Gránulos de Estrés , Proteínas Virales/genética , Virus Sincitial Respiratorio Humano/genética , Replicación Viral/fisiología
6.
Life Sci ; 329: 121916, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419412

RESUMEN

Obesity can exacerbate the systemic inflammatory process, leading to increased infiltration of monocytes in white adipose tissue (WAT) and polarization of these cells into pro-inflammatory M1 macrophages, while reducing the population of anti-inflammatory M2 macrophages. Aerobic exercise has been shown to be effective in reducing the pro-inflammatory profile. However, the impact of strength training and the duration of training on macrophage polarization in the WAT of obese individuals have not been widely studied. Therefore, our aim was to investigate the effects of resistance exercise on macrophage infiltration and polarization in the epididymal and subcutaneous adipose tissue of obese mice. We compared the following groups: Control (CT), Obese (OB), Obese 7-day strength training (STO7d), and Obese 15-day strength training (STO15d). Macrophage populations were evaluated by flow cytometry: total macrophages (F4/80+), M1 (CD11c), and M2 (CD206) macrophages. Our results demonstrated that both training protocols improved peripheral insulin sensitivity by increasing AKT phosphorylation (Ser473). Specifically, the 7-day training regimen reduced total macrophage infiltration and M2 macrophage levels without altering M1 levels. In the STO15d group, significant differences were observed in total macrophage levels, M1 macrophages, and the M1/M2 ratio compared to the OB group. In the epididymal tissue, a reduction in the M1/M2 ratio was observed in the STO7d group. Overall, our data demonstrate that 15 days of strength exercise can reduce the M1/M2 ratio of macrophages in white adipose tissue.


Asunto(s)
Tejido Adiposo , Resistencia a la Insulina , Ratones , Animales , Inflamación , Tejido Adiposo Blanco , Obesidad/terapia , Macrófagos , Ratones Endogámicos C57BL , Ratones Obesos
7.
Toxicol Rep ; 11: 10-22, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37383489

RESUMEN

Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.

8.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052684

RESUMEN

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo
9.
Cells ; 12(2)2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36672191

RESUMEN

NEK6 is a central kinase in developing castration-resistant prostate cancer (CRPC). However, the pathways regulated by NEK6 in CRPC are still unclear. Cancer cells have high reactive oxygen species (ROS) levels and easily adapt to this circumstance and avoid cell death by increasing antioxidant defenses. We knocked out the NEK6 gene and evaluated the redox state and DNA damage response in DU-145 cells. The knockout of NEK6 decreases the clonogenic capacity, proliferation, cell viability, and mitochondrial activity. Targeting the NEK6 gene increases the level of intracellular ROS; decreases the expression of antioxidant defenses (SOD1, SOD2, and PRDX3); increases JNK phosphorylation, a stress-responsive kinase; and increases DNA damage markers (p-ATM and γH2AX). The exogenous overexpression of NEK6 also increases the expression of these same antioxidant defenses and decreases γH2AX. The depletion of NEK6 also induces cell death by apoptosis and reduces the antiapoptotic Bcl-2 protein. NEK6-lacking cells have more sensitivity to cisplatin. Additionally, NEK6 regulates the nuclear localization of NF-κB2, suggesting NEK6 may regulate NF-κB2 activity. Therefore, NEK6 alters the redox balance, regulates the expression of antioxidant proteins and DNA damage, and its absence induces the death of DU-145 cells. NEK6 inhibition may be a new strategy for CRPC therapy.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Antioxidantes/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Oxidación-Reducción , Daño del ADN , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo
10.
J Nutr Biochem ; 114: 109270, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36706930

RESUMEN

It is known that long-term high-fat diet (HF) feeding drastically affects the adipose tissue, contributing to metabolic disorders. Recently, short-term HF consumption was shown to affect different neuronal signaling pathways. Thus, we aimed to evaluate the inflammatory effects of a short-term HF and whether a diet containing omega-3 fatty acid fats from flaxseed oil (FS) has protective effects. Mice were divided into three groups for 3 d, according to their diets: Control group (CT), HF, or FS for 3 d. Lipid profiles were assessed through mass spectrometry and inflammatory markers by RT-qPCR and Western blotting. After short-term HF, mice increased food intake, body weight, adiposity, and fasting glucose. Increased mRNA content of Ccl2 and Tnf was demonstrated in the HF compared to CT in mesenteric adipose tissue. In the liver, TNFα protein was higher in the HF group than in CT, followed by a decreased polyunsaturated fatty acids tissue incorporation in HF. On the other hand, the consumption of FS reduced food intake and fasting glucose, as well as increased omega-3 fatty acid incorporation in MAT and the liver. However, short-term FS was insufficient to control the early inflammation triggered by HF in MAT and the liver. These data demonstrated that a 3-d HF diet is enough to damage glucose homeostasis and trigger inflammation. In contrast, short-term FS protects against increased food intake and fasting glucose but not inflammation in mice.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3 , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Aceite de Linaza/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Ratones Endogámicos C57BL
11.
J Nat Prod ; 85(12): 2695-2705, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36508333

RESUMEN

In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.


Asunto(s)
Bothrops , Venenos de Crotálidos , Neuroblastoma , Fármacos Neuroprotectores , Animales , Humanos , Antioxidantes/farmacología , Venenos de Crotálidos/química , Venenos de Crotálidos/farmacología , Péptidos , Venenos de Serpiente
12.
J Food Biochem ; 46(12): e14383, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181391

RESUMEN

The growing value of industrial collagen by-products has given rise to interest in extracting them from different species of animals. Intrinsic protein structure variation of collagen sources and its hydrolysis can bring about different bioactivities. This study aimed to characterize and evaluate the differences in vitro biological potential of commercial bovine (BH), fish (FH), and porcine hydrolysates (PH) regarding their antioxidant and hypoglycemic activities. All samples showed percentages above 90% of protein content, with high levels of amino acids (glycine, proline, and hydroxyproline), responsible for the specific structure of collagen. The BH sample showed a higher degree of hydrolysis (DH) (8.7%) and a higher percentage of smaller than 2 kDa peptides (74.1%). All collagens analyzed in vitro showed inhibition of pancreatic enzymes (α-amylase and α-glucosidase), with the potential to prevent diabetes mellitus. The PH sample showed higher antioxidant activities measured by ORAC (67.08 ± 4.23 µmol Trolox Eq./g) and ABTS radical scavenging (65.69 ± 3.53 µmol Trolox Eq./g) methods. For the first time, DNA protection was analyzed to hydrolyzed collagen peptides, and the FH sample showed a protective antioxidant action to supercoiled DNA both in the presence (39.51%) and in the absence (96.36%) of AAPH (reagent 2,2'-azobis(2-amidinopropane)). The results confirmed that the source of native collagen reflects on the bioactivity of hydrolyzed collagen peptides, probably due to its amino acid composition. PRACTICAL APPLICATIONS: Our data provide new application for collagen hydrolysates with hypoglycemiant and antioxidant activity. These data open discussion for future studies on the additional benefits arising from collagen peptide consumption for the prevention of aging complications or hyperglycemic conditions as observed in chronic diseases such as diabetes mellitus type II (DM 2). The confirmation of these results can open new market areas for the use of collagen with pharmacological applications or to produce new supplements. Furthermore, provides a solution for waste collagen from meat industries and adds value to the product.


Asunto(s)
Antioxidantes , Glucosa , Animales , Bovinos , Porcinos , Antioxidantes/química , Péptidos/química , Péptido Hidrolasas , Colágeno/química , Aminoácidos , Peces/metabolismo
13.
Cells ; 11(14)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35883638

RESUMEN

Neuronal hypothalamic insulin resistance is implicated in energy balance dysregulation and contributes to the pathogenesis of several neurodegenerative diseases. Its development has been intimately associated with a neuroinflammatory process mainly orchestrated by activated microglial cells. In this regard, our study aimed to investigate a target that is highly expressed in the hypothalamus and involved in the regulation of the inflammatory process, but still poorly investigated within the context of neuronal insulin resistance: the α7 nicotinic acetylcholine receptor (α7nAchR). Herein, we show that mHypoA-2/29 neurons exposed to pro-inflammatory microglial conditioned medium (MCM) showed higher expression of the pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α, in addition to developing insulin resistance. Activation of α7nAchR with the selective agonist PNU-282987 prevented microglial-induced inflammation by inhibiting NF-κB nuclear translocation and increasing IL-10 and tristetraprolin (TTP) gene expression. The anti-inflammatory role of α7nAchR was also accompanied by an improvement in insulin sensitivity and lower activation of neurodegeneration-related markers, such as GSK3 and tau. In conclusion, we show that activation of α7nAchR anti-inflammatory signaling in hypothalamic neurons exerts neuroprotective effects and prevents the development of insulin resistance induced by pro-inflammatory mediators secreted by microglial cells.


Asunto(s)
Resistencia a la Insulina , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Benzamidas , Compuestos Bicíclicos con Puentes , Glucógeno Sintasa Quinasa 3/metabolismo , Hipotálamo/metabolismo , Inflamación/patología , Ratones , Microglía/metabolismo , Neuronas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
14.
Sci Adv ; 8(30): eabm7355, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905178

RESUMEN

Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Interleucina-6 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ácidos Grasos/metabolismo , Humanos , Hipotálamo/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Músculo Esquelético/metabolismo , Oxidación-Reducción
15.
Front Cell Infect Microbiol ; 12: 849017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677658

RESUMEN

SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteínas M de Coronavirus , Antígeno Nuclear de Célula en Proliferación , Proteínas M de Coronavirus/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , SARS-CoV-2
16.
Clin Exp Pharmacol Physiol ; 49(10): 1072-1081, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35690890

RESUMEN

Obesity is associated with low-grade inflammation and disturbances in hepatic metabolism. This study aimed to investigate the effects of resistance exercise on inflammatory signalling related to IκB kinase (IKK) ɛ protein (IKKɛ) and on hepatic fat accumulation in obese mice. Male Swiss mice were distributed into three groups: control (CTL) fed with standard chow; obese (OB) mice induced by a high-fat diet (HFD); obese exercised (OB + RE) mice fed with HFD and submitted to a resistance exercise training. The resistance exercise training protocol consisted of 20 sets/3 ladder climbs for 8 weeks, three times/week on alternate days. The training overload was equivalent to 70% of the maximum load supported by the rodent. Assays were performed to evaluate weight gain, hepatic fat content, fasting glucose, insulin sensitivity, IKKɛ phosphorylation and proteins related to insulin signalling and lipogenesis in the liver. Mice that received the high-fat diet showed greater adiposity, impaired insulin sensitivity, increased fasting glucose and increased hepatic fat accumulation. These results were accompanied by an increase in IKKɛ phosphorylation and lipogenesis-related proteins such as cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) in the liver of obese mice. In contrast, exercised mice showed lower body weight and adiposity evolution throughout the experiment. In addition, resistance exercise suppressed the effects of the high-fat diet by reducing IKKɛ phosphorylation and hepatic fat content. In conclusion, resistance exercise training improves hepatic fat metabolism and glycaemic homeostasis, which are, at least in part, linked to the anti-inflammatory effect of reduced IKKɛ phosphorylation in the liver of obese mice.


Asunto(s)
Adiposidad , Quinasa I-kappa B , Hígado , Obesidad , Entrenamiento de Fuerza , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Fosforilación
17.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36661509

RESUMEN

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

18.
Life Sci ; 287: 120124, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34748760

RESUMEN

Hepatic steatosis is directly associated with hepatic inflammation and insulin resistance, which is correlated with hyperglycemia and type 2 diabetes mellitus (T2DM). Aerobic and strength training have been pointed out as efficient strategies against hepatic steatosis. However, little is known about the effects of the combination of those two protocols on hepatic steatosis. Therefore, this study aimed to evaluate the impact of short-term combined training (STCT) on glucose homeostasis and in the synthesis and oxidation of fat in the liver of obesity-induced mice with hepatic steatosis. Swiss mice were distributed into three groups: control lean (CTL), sedentary obese (OB), and combined training obese (CTO). The CTO group performed the STCT protocol, which consisted of strength and aerobic exercises in the same session. The protocol lasted seven days. The CTO group reduced the glucose levels and fatty liver when compared to the OB group. Interestingly, these results were observed even without reductions in body adiposity. CTO group also showed increased hepatic insulin sensitivity, with lower hepatic glucose production (HGP). STCT reduced the expression of the lipogenic genes Fasn and Scd1 and hepatic inflammation, as well as increased the ACC phosphorylation and the oxidative genes Cpt1a and Ppara, reverting the complications caused by obesity. Since this protocol increased lipid oxidation and reduced hepatic lipogenesis, regardless of body fat mass decrease, it can be considered an effective non-pharmacological strategy for the treatment of hepatic steatosis.


Asunto(s)
Hígado Graso/metabolismo , Hígado Graso/terapia , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Hígado/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Prueba de Esfuerzo/métodos , Masculino , Ratones , Obesidad/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/métodos
19.
Curr Res Food Sci ; 4: 662-669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34622216

RESUMEN

Phenolic compounds in crude extracts were obtained from defatted sunflower seed flour using sodium bisulfite and ethanol solutions as extracting agents. The antioxidant, antimicrobial, anti-proliferative, and DNA protective activities of the phenolic compounds in crude extract were analyzed. The phenolic compound contents were determined as chlorogenic acid (CGA) equivalent, presenting 11.57 and 15.44 g CGA eq/100g regarding the sodium bisulfite extract and ethanolic extract, respectively. The ORAC, DPPH, and ABTS methods were used to evaluate antioxidant activity. Both extracts presented antioxidant properties, considering that the ethanolic extract demonstrated higher values (EC50 0.36 g extract/g DPPH•). The antimicrobial action was analyzed as to the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of 4 kinds of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The ethanolic extract was effective against all of these microorganisms, out of which E. coli was the most sensitive, with a MIC of 11.6 mg CGA/mL. The ethanolic extract presented DNA protective activity without cytotoxic activity concerning in vitro anti-proliferative assay. These findings can be considered as initial evidence of the potential use of phenolic compounds obtained from sunflower seed flour as natural additives in the food industry.

20.
Phytother Res ; 35(11): 6191-6203, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34494317

RESUMEN

Cervical cancer is the fourth leading cause of cancer mortality in women worldwide. Beetroot (Beta vulgaris L.) has bioactive compounds that can inhibit the progression of different types of cancer. To analyze the antiproliferative effects of beet leaf and root extracts, we performed MTT, clonogenic survival, cell cycle analysis, Annexin/PI labeling, and western blotting. Here, we report that 10 and 100 µg/ml of root and leaf extracts decreased cell viability and potentiated rapamycin and cisplatin effects while decreased the number of large colonies, especially at 10 µg/ml (293.6 of control vs. 200.0 of leaf extract, p = .0059; 138.6 of root extract, p = .0002). After 48 hr, 100 µg/ml of both extracts led to increased sub-G1 and G0/G1 populations. In accordance, 100 µg/ml of root extract induced early apoptosis (mean = 0.64 control vs. 1.56 root; p = .048) and decreased cell size (p < .0001). Both extracts decreased phosphorylation and expression of mechanistic Target of Rapamycin (mTOR) signaling, especially by inhibiting ribosomal protein S6 (S6) phosphorylation, increasing cleaved poly(ADP-ribose) polysomerase 1 (PARP1) and Bcl-2-like protein 11 (BIM), and decreasing cyclin D1 expression, which regulates cell cycle progression. Here, we demonstrate that beetroot and leaf extracts could be an efficient strategy against cervical cancer.


Asunto(s)
Antineoplásicos Fitogénicos , Beta vulgaris , Neoplasias del Cuello Uterino , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis , Proliferación Celular , Células HeLa , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...