Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Front Immunol ; 14: 1205616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520535

RESUMEN

Introduction: Assessing labial salivary gland exocrinopathy is a cornerstone in primary Sjögren's syndrome. Currently this relies on the histopathologic diagnosis of focal lymphocytic sialadenitis and computing a focus score by counting lym=phocyte foci. However, those lesions represent advanced stages of primary Sjögren's syndrome, although earlier recognition of primary Sjögren's syndrome and its effective treatment could prevent irreversible damage to labial salivary gland. This study aimed at finding early biomarkers of primary Sjögren's syndrome in labial salivary gland combining metabolomics and machine-learning approaches. Methods: We used a standardized targeted metabolomic approach involving high performance liquid chromatography coupled with mass spectrometry among newly diagnosed primary Sjögren's syndrome (n=40) and non- primary Sjögren's syndrome sicca (n=40) participants in a prospective cohort. A metabolic signature predictive of primary Sjögren's syndrome status was explored using linear (logistic regression with elastic-net regularization) and non-linear (random forests) machine learning architectures, after splitting the data set into training, validation, and test sets. Results: Among 126 metabolites accurately measured, we identified a discriminant signature composed of six metabolites with robust performances (ROC-AUC = 0.86) for predicting primary Sjögren's syndrome status. This signature included the well-known immune-metabolite kynurenine and five phospholipids (LysoPC C28:0; PCaa C26:0; PCaaC30:2; PCae C30:1, and PCaeC30:2). It was split into two main components: the first including the phospholipids was related to the intensity of lymphocytic infiltrates in salivary glands, while the second represented by kynurenine was independently associated with the presence of anti-SSA antibodies in participant serum. Conclusion: Our results reveal an immuno-lipidomic signature in labial salivary gland that accurately distinguishes early primary Sjögren's syndrome from other causes of sicca symptoms.


Asunto(s)
Síndrome de Sjögren , Humanos , Estudios Prospectivos , Quinurenina , Glándulas Salivales/patología , Glándulas Salivales Menores/patología
2.
Antioxidants (Basel) ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38247484

RESUMEN

Metabolomics is a powerful data-driven tool for in-depth biological phenotyping that could help identify the specific metabolic profile of cryptogenic strokes, for which no precise cause has been identified. We performed a targeted quantitative metabolomics study in West African patients who had recently suffered an ischemic stroke, which was either cryptogenic (n = 40) or had a clearly identified cause (n = 39), compared to a healthy control group (n = 40). Four hundred fifty-six metabolites were accurately measured. Multivariate analyses failed to reveal any metabolic profile discriminating between cryptogenic ischemic strokes and those with an identified cause but did show superimposable metabolic profiles in both groups, which were clearly distinct from those of healthy controls. The blood concentrations of 234 metabolites were significantly affected in stroke patients compared to controls after the Benjamini-Hochberg correction. Increased methionine sulfoxide and homocysteine concentrations, as well as an overall increase in saturation of fatty acids, were indicative of acute oxidative stress. This signature also showed alterations in energetic metabolism, cell membrane integrity, monocarbon metabolism, and neurotransmission, with reduced concentrations of several metabolites known to be neuroprotective. Overall, our results show that cryptogenic strokes are not pathophysiologically distinct from ischemic strokes of established origin, and that stroke leads to intense metabolic remodeling with marked oxidative and energetic stresses.

3.
Biomedicines ; 10(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884972

RESUMEN

(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.

4.
Biomedicines ; 10(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740432

RESUMEN

(1) Background: Intrauterine growth restriction (IUGR) involves metabolic changes that may be responsible for an increased risk of metabolic and cardiovascular diseases in adulthood. Several metabolomic profiles have been reported in maternal blood and urine, amniotic fluid, cord blood and newborn urine, but the placenta has been poorly studied so far. (2) Methods: To decipher the origin of this metabolic reprogramming, we conducted a targeted metabolomics study replicated in two cohorts of placenta and one cohort of cord blood by measuring 188 metabolites by mass spectrometry. (3) Results: OPLS-DA multivariate analyses enabled clear discriminations between IUGR and controls, with good predictive capabilities and low overfitting in the two placental cohorts and in cord blood. A signature of 25 discriminating metabolites shared by both placental cohorts was identified. This signature points to sharp impairment of lipid and mitochondrial metabolism with an increased reliance on the creatine-phosphocreatine system by IUGR placentas. Increased placental insulin resistance and significant alteration of fatty acids oxidation, together with relatively higher phospholipase activity in IUGR placentas, were also highlighted. (4) Conclusions: Our results show a deep lipid and energetic remodeling in IUGR placentas that may have a lasting effect on the fetal metabolism.

5.
J Clin Med ; 11(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35054098

RESUMEN

About half of patients with Graves' disease develop an orbitopathy related to an inflammatory expansion of the periorbital adipose tissue and muscles. We used a targeted metabolomic approach measuring 188 metabolites by mass spectrometry to compare the metabolic composition of tears in patients with active (n = 21) versus inactive (n = 24) thyroid-associated orbitopathy. Among the 44 metabolites accurately measured, 8 showed a significant alteration of their concentrations between the two groups. Two short-chain acylcarnitines, propionylcarnitine and butyrylcarnitine, and spermine showed increased concentrations in the tears of patients with active orbitopathy, whereas ornithine, glycine, serine, citrulline and histidine showed decreased concentrations in this group. In addition, the ratio putrescine/ornithine, representing the activity of ornithine decarboxylase, was significantly increased in patients with active compared to inactive orbitopathy (p = 0.0011, fold change 3.75). The specificity of this candidate biomarker was maintained when compared to a control group with unclassified dry eye disease. Our results suggest that the stimulation of ornithine decarboxylase by TSH receptor autoantibodies in orbital fibroblasts could lead to increased synthesis of spermine, through the increased activity of ornithine decarboxylase, that may contribute to periorbital expansion in Graves' ophthalmopathy.

6.
Nutrients ; 13(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34959929

RESUMEN

(1) Background: The anthocyanin delphinidin exhibits anti-angiogenic properties both in in vitro and in vivo angiogenesis models. However, in vivo delphinidin is poorly absorbed, thus its modest bioavailability and stability reduce its anti-angiogenic effects. The present work takes advantage of small extracellular vesicle (sEV) properties to enhance both the stability and efficacy of delphinidin. When encapsulated in sEVs, delphinidin inhibits the different stages of angiogenesis on human aortic endothelial cells (HAoECs). (2) Methods: sEVs from immature dendritic cells were produced and loaded with delphinidin. A method based on UHPLC-HRMS was implemented to assess delphinidin metabolites within sEVs. Proliferation assay, nitric oxide (NO) production and Matrigel assay were evaluated in HAoECs. (3) Results: Delphinidine, 3-O-ß-rutinoside and Peonidin-3-galactoside were found both in delphinidin and delphinidin-loaded sEVs. sEV-loaded delphinidin increased the potency of free delphinidin 2-fold for endothelial proliferation, 10-fold for endothelial NO production and 100-fold for capillary-like formation. Thus, sEV-loaded delphinidin exerts effects on the different steps of angiogenesis. (4) Conclusions: sEVs may be considered as a promising approach to deliver delphinidin to target angiogenesis-related diseases, including cancer and pathologies associated with excess vascularization.


Asunto(s)
Inhibidores de la Angiogénesis , Antocianinas/farmacología , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares , Antocianinas/administración & dosificación , Antocianinas/metabolismo , Aorta/citología , Células Cultivadas , Células Dendríticas/citología , Estabilidad de Medicamentos , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neovascularización Patológica/tratamiento farmacológico , Óxido Nítrico/metabolismo
7.
Ocul Surf ; 22: 110-116, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332148

RESUMEN

PURPOSE: The lacrimal exocrinopathy of primary Sjögren's syndrome (pSS) is one of the main causes of severe dry eye syndrome and a burden for patients. Early recognition and treatment could prevent irreversible damage to lacrimal glands. The aim of this study was to find biomarkers in tears, using metabolomics and data mining approaches, in patients with newly-diagnosed pSS compared to other causes of dry eye syndrome. METHODS: A prospective cohort of 40 pSS and 40 non-pSS Sicca patients with dryness was explored through a standardized targeted metabolomic approach using liquid chromatography coupled with mass spectrometry. A metabolomic signature predictive of the pSS status was sought out using linear (logistic regression with elastic-net regularization) and non-linear (random forests) machine learning architectures, after splitting the studied population into training, validation and test sets. RESULTS: Among the 104 metabolites accurately measured in tears, we identified a discriminant signature composed of nine metabolites (two amino acids: serine, aspartate; one biogenic amine: dopamine; six lipids: Lysophosphatidylcholine C16:1, C18:1, C18:2, sphingomyelin C16:0 and C22:3, and the phoshatidylcholine diacyl PCaa C42:4), with robust performances (ROC-AUC = 0.83) for predicting the pSS status. Adjustment for age, sex and anti-SSA antibodies did not disrupt the link between the metabolomic signature and the pSS status. The non-lipidic components also remained specific for pSS regardless of the dryness severity. CONCLUSION: Our results reveal a metabolomic signature for tears that distinguishes pSS from other dry eye syndromes and further highlight nine key metabolites of potential interest for early diagnosis and therapeutics of pSS.


Asunto(s)
Síndromes de Ojo Seco , Síndrome de Sjögren , Biomarcadores , Síndromes de Ojo Seco/diagnóstico , Humanos , Metabolómica , Estudios Prospectivos , Síndrome de Sjögren/diagnóstico
8.
J Proteome Res ; 20(5): 2390-2396, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33818108

RESUMEN

The postmortem diagnosis of hypothermia fatalities is often complex due to the absence of pathognomonic lesions and biomarkers. In this study, potential novel biomarkers of hypothermia fatalities were searched in the vitreous humor of known cases of hypothermia fatalities (n = 20) compared to control cases (n = 16), using a targeted metabolomics approach allowing quantitative detection of 188 metabolites. A robust discriminant model with good predictivity was obtained with the supervised OPLS-DA multivariate analysis, showing a distinct separation between the hypothermia and control groups. This signature was characterized by the decreased concentrations of five metabolites (methionine sulfoxide, tryptophan, phenylalanine, alanine, and ornithine) and the increased concentration of 28 metabolites (21 phosphatidylcholines, 3 sphingomyelins, spermine, citrulline, acetylcarnitine, and hydroxybutyrylcarnitine) in hypothermia fatalities compared to controls. The signature shows similarities with already identified features in serum such as the altered concentrations of tryptophan, acylcarnitines, and unsaturated phosphatidylcholines, revealing a highly significant increased activity of methionine sulfoxide reductase, attested by a low methionine sulfoxide-to-methionine ratio. Our results show a preliminary metabolomics signature of hypothermia fatalities in the vitreous humor, highlighting an increased methionine sulfoxide reductase activity.


Asunto(s)
Líquidos Corporales , Hipotermia , Biomarcadores , Humanos , Metabolómica , Cuerpo Vítreo
9.
Metabolism ; 118: 154727, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581132

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is characterized by a cluster of interconnected risk factors -hyperglycemia, dyslipidemia, hypertension and obesity- leading to an increased risk of cardiovascular events. Small extracellular vesicles (sEVs) can be considered as new biomarkers of different pathologies, and they are involved in intercellular communication. Here, we hypothesize that sEVs are implicated in MetS-associated endothelial dysfunction. METHODS: Circulating sEVs of non-MetS (nMetS) subjects and MetS patients were isolated from plasma and characterized. Thereafter, sEV effects on endothelial function were analyzed by measuring nitric oxide (NO) and reactive oxygen species (ROS) production, and mitochondrial dynamic proteins on human endothelial aortic cells (HAoECs). RESULTS: Circulating levels of sEVs positively correlated with anthropometric and biochemical parameters including visceral obesity, glycaemia, insulinemia, and dyslipidemia. Treatment of HAoECs with sEVs from MetS patients decreased NO production through the inhibition of the endothelial NO-synthase activity. Injection of MetS-sEVs into mice impaired endothelium-dependent relaxation induced by acetylcholine. Furthermore, MetS-sEVs increased DHE and MitoSox-associated fluorescence in HAoECs, reflecting enhanced cytosolic and mitochondrial ROS production which was not associated with mitochondrial biogenesis or dynamic changes. MetS patients displayed elevated circulating levels of LPS in plasma, and, at least in part, it was associated to circulating sEVs. Pharmacological inhibition and down-regulation of TLR4, as well as sEV-carried LPS neutralization, results in a substantial decrease of ROS production induced by MetS-sEVs. CONCLUSION: These results evidence sEVs from MetS patients as potential new biomarkers for this syndrome, and TLR4 pathway activation by sEVs provides a link between the endothelial dysfunction and metabolic disturbances described in MetS.


Asunto(s)
Endotelio Vascular/patología , Vesículas Extracelulares/metabolismo , Lipopolisacáridos/metabolismo , Síndrome Metabólico/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Estudios de Cohortes , Citosol/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
10.
Hum Mol Genet ; 30(1): 21-29, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33437983

RESUMEN

Leber's hereditary optic neuropathy (LHON) is the most common disorder due to mitochondrial DNA mutations and complex I deficiency. It is characterized by an acute vision loss, generally in young adults, with a higher penetrance in males. How complex I dysfunction induces the peculiar LHON clinical presentation remains an unanswered question. To gain an insight into this question, we carried out a non-targeted metabolomic investigation using the plasma of 18 LHON patients, during the chronic phase of the disease, comparing them to 18 healthy controls. A total of 500 metabolites were screened of which 156 were accurately detected. A supervised Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) highlighted a robust model for disease prediction with a Q2 (cum) of 55.5%, with a reliable performance during the permutation test (cross-validation analysis of variance, P-value = 5.02284e-05) and a good prediction of a test set (P = 0.05). This model highlighted 10 metabolites with variable importance in the projection (VIP) > 0.8. Univariate analyses revealed nine discriminating metabolites, six of which were the same as those found in the Orthogonal Projections to Latent Structures Discriminant Analysis model. In total, the 13 discriminating metabolites identified underlining dietary metabolites (nicotinamide, taurine, choline, 1-methylhistidine and hippurate), mitochondrial energetic substrates (acetoacetate, glutamate and fumarate) and purine metabolism (inosine). The decreased concentration of taurine and nicotinamide (vitamin B3) suggest interesting therapeutic targets, given their neuroprotective roles that have already been demonstrated for retinal ganglion cells. Our results show a reliable predictive metabolomic signature in the plasma of LHON patients and highlighted taurine and nicotinamide deficiencies.


Asunto(s)
Mitocondrias/genética , Niacinamida/sangre , Atrofia Óptica Hereditaria de Leber/sangre , Taurina/sangre , Adolescente , Adulto , Anciano , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/sangre , Complejo I de Transporte de Electrón/genética , Femenino , Humanos , Masculino , Metaboloma/genética , Metabolómica , Persona de Mediana Edad , Mitocondrias/patología , Mutación/genética , Niacinamida/deficiencia , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Taurina/deficiencia , Adulto Joven
11.
Circ Res ; 127(6): 747-760, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32539601

RESUMEN

RATIONALE: Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. OBJECTIVE: To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. METHODS AND RESULTS: Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE-/- mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE-/- mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. CONCLUSIONS: These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Proteínas de Unión al GTP rap1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Aterosclerosis/sangre , Aterosclerosis/patología , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Permeabilidad , Fosforilación , Pronóstico , Proteómica , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rap
12.
Sci Rep ; 10(1): 7517, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371946

RESUMEN

Metabolomic studies have demonstrated the existence of biological signatures in blood of patients with arterial hypertension, but no study has hitherto reported the sexual dimorphism of these signatures. We compared the plasma metabolomic profiles of 28 individuals (13 women and 15 men) with essential arterial hypertension with those of a healthy control group (18 women and 18 men), using targeted metabolomics. Among the 188 metabolites explored, 152 were accurately measured. Supervised OPLS-DA (orthogonal partial least squares-discriminant analysis) showed good predictive performance for hypertension in both sexes (Q2cum = 0.59 in women and 0.60 in men) with low risk of overfitting (p-value-CV ANOVA = 0.004 in women and men). Seventy-five and 65 discriminant metabolites with a VIP (variable importance for the projection) greater than 1 were evidenced in women and men, respectively. Both sexes showed a considerable increase in phosphatidylcholines, a decrease in C16:0 with an increase in C28:1 lysophosphatidylcholines, an increase in sphingomyelins, as well as an increase of symmetric dimethylarginine (SDMA), acetyl-ornithine and hydroxyproline. Twenty-nine metabolites, involved in phospholipidic and cardiac remodeling, arginine/nitric oxide pathway and antihypertensive and insulin resistance mechanisms, discriminated the metabolic sexual dimorphism of hypertension. Our results highlight the importance of sexual dimorphism in arterial hypertension.


Asunto(s)
Hipertensión/sangre , Hipertensión/fisiopatología , Metaboloma , Factores Sexuales , Adulto , Arginina/análogos & derivados , Arginina/sangre , Biomarcadores/sangre , Análisis Discriminante , Femenino , Humanos , Hipertensión/metabolismo , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Ornitina/sangre , Fosfatidilcolinas/sangre , Análisis de Componente Principal , Esfingomielinas
13.
Cells ; 9(6)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466566

RESUMEN

Few data-driven metabolomic approaches have been reported in sickle cell disease (SCD) to date. We performed a metabo-lipidomic study on the plasma and red blood cells of a steady-state mouse model carrying the homozygous human hemoglobin SS, compared with AS and AA genotypes. Among the 188 metabolites analyzed by a targeted quantitative metabolomic approach, 153 and 129 metabolites were accurately measured in the plasma and red blood cells, respectively. Unsupervised PCAs (principal component analyses) gave good spontaneous discrimination between HbSS and controls, and supervised OPLS-DAs (orthogonal partial least squares-discriminant analyses) provided highly discriminant models. These models confirmed the well-known deregulation of nitric oxide synthesis in the HbSS genotype, involving arginine deficiency and increased levels of dimethylarginines, ornithine, and polyamines. Other discriminant metabolites were newly evidenced, such as hexoses, alpha-aminoadipate, serotonin, kynurenine, and amino acids, pointing to a glycolytic shift and to the alteration of metabolites known to be involved in nociceptive pathways. Sharp remodeling of lysophosphatidylcholines, phosphatidylcholines, and sphingomyelins was evidenced in red blood cells. Our metabolomic study provides an overview of the metabolic remodeling induced by the sickle genotype in the plasma and red blood cells, revealing a biological fingerprint of altered nitric oxide, bioenergetics and nociceptive pathways.


Asunto(s)
Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/metabolismo , Eritrocitos/metabolismo , Metabolómica , Nocicepción , Animales , Análisis Discriminante , Hemoglobina Falciforme , Heterocigoto , Análisis de los Mínimos Cuadrados , Ratones , Análisis de Componente Principal
14.
J Clin Med ; 9(4)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290473

RESUMEN

The metabolomic profile of vaso-occlusive crisis, compared to the basal state of sickle cell disease, has never been reported to our knowledge. Using a standardized targeted metabolomic approach, performed on plasma and erythrocyte fractions, we compared these two states of the disease in the same group of 40 patients. Among the 188 metabolites analyzed, 153 were accurately measured in plasma and 143 in red blood cells. Supervised paired partial least squares discriminant analysis (pPLS-DA) showed good predictive performance for test sets with median area under the receiver operating characteristic (AUROC) curves of 99% and mean p-values of 0.0005 and 0.0002 in plasma and erythrocytes, respectively. A total of 63 metabolites allowed discrimination between the two groups in the plasma, whereas 61 allowed discrimination in the erythrocytes. Overall, this signature points to altered arginine and nitric oxide metabolism, pain pathophysiology, hypoxia and energetic crisis, and membrane remodeling of red blood cells. It also revealed the alteration of metabolite concentrations that had not been previously associated with sickle cell disease. Our results demonstrate that the vaso-occlusive crisis has a specific metabolomic signature, distinct from that observed at steady state, which may be potentially helpful for finding predictive biomarkers for this acute life-threatening episode.

15.
Pan Afr Med J ; 35: 10, 2020.
Artículo en Francés | MEDLINE | ID: mdl-32117525

RESUMEN

INTRODUCTION: Arterial hypertension is a major public health problem in sub-Saharan Africa due to its high frequency and to the cardiovascular risk that it entails. The purpose of this study was to assess the prevalence of clinical and biological risk factors of hypertension in Bamako (Mali). METHODS: We conducted a case-control study, stratified in function of the sex, of 72 participants including 36 patients with hypertension and 36 controls. Twenty-two plasma biochemical parameters have been measured and analyzed using univariate and multivariate tests. RESULTS: Hyperhomocysteinemia was found in 55.6% of women (p = 0.03) and 100% of men (p = 0.007) with hypertension. High NT-proBNP was also found in 16.7% of women (VIP > 1 in multivariate model) and of men with hypertension (p = 0.00006). A good multivariate predictive model (OPLS-DA) was only obtained in women with high blood pressure, with Q2cum = 0.73, attesting severe sexual dimorphism associated with arterial hypertension. This model involved eight parameters whose plasma concentration was modified (homocysteine, NT-proBNP, potassium, urea, blood glucose, sodium, chlorine and total proteins). CONCLUSION: We registered a significant association between hyperhomocysteinemia and arterial hypertension. Therefore, the assay of homocysteine associated with good management would decrease the risk of cardiovascular diseases while improving the quality of life of hypertensive patients.


Asunto(s)
Hiperhomocisteinemia/epidemiología , Hipertensión/epidemiología , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/metabolismo , Calidad de Vida , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Malí , Persona de Mediana Edad , Análisis Multivariante , Factores de Riesgo
16.
Hum Mol Genet ; 29(8): 1319-1329, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32202296

RESUMEN

Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1-/- MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1-/- MEFs metabolic signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1-/- MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum (ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , GTP Fosfohidrolasas/genética , Metabolómica , Alelos , Animales , Fibroblastos/metabolismo , Humanos , Ratones , Mutación Missense/genética , Fenotipo , Proteostasis/genética
17.
J Clin Med ; 9(3)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120889

RESUMEN

To determine the plasma metabolomic profile of exudative age-related macular degeneration (AMD), we performed a targeted metabolomics study on the plasma from patients (n = 40, mean age = 81.1) compared to an age- and sex-matched control group (n = 40, mean age = 81.8). All included patients had documented exudative AMD, causing significant visual loss (mean logMAR visual acuity = 0.63), compared to the control group. Patients and controls did not differ in terms of body mass index and co-morbidities. Among the 188 metabolites analyzed, 150 (79.8%) were accurately measured. The concentrations of 18 metabolites were significantly modified in the AMD group, but only six of them remained significantly different after Benjamini-Hochberg correction. Valine, lysine, carnitine, valerylcarnitine and proline were increased, while carnosine, a dipeptide disclosing anti-oxidant and anti-glycating properties, was, on average, reduced by 50% in AMD compared to controls. Moreover, carnosine was undetectable for 49% of AMD patients compared to 18% in the control group (p-value = 0.0035). Carnitine is involved in the transfer of fatty acids within the mitochondria; proline, lysine and valerylcarnitine are substrates for mitochondrial electrons transferring flavoproteins, and proline is one of the main metabolites supplying energy to the retina. Overall, our results reveal six new metabolites involved in the plasma metabolomic profile of exudative AMD, suggesting mitochondrial energetic impairments and carnosine deficiency.

18.
Metabolites ; 10(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012845

RESUMEN

Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle glaucoma (POAG) pathophysiology, we performed a non-targeted metabolomics analysis on the plasma from POAG patients (n = 34) and age- and sex-matched controls (n = 30). We investigated the differential signature of POAG plasma compared to controls, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). A data mining strategy, combining a filtering method with threshold criterion, a wrapper method with iterative selection, and an embedded method with penalization constraint, was used. These strategies are most often used separately in metabolomics studies, with each of them having their own limitations. We opted for a synergistic approach as a mean to unravel the most relevant metabolomics signature. We identified a set of nine metabolites, namely: nicotinamide, hypoxanthine, xanthine, and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline with decreased concentrations and N-acetyl-L-Leucine, arginine, RAC-glycerol 1-myristate, 1-oleoyl-RAC-glycerol, cystathionine with increased concentrations in POAG; the modification of nicotinamide, N-acetyl-L-Leucine, and arginine concentrations being the most discriminant. Our findings open up therapeutic perspectives for the diagnosis and treatment of POAG.

19.
Basic Res Cardiol ; 115(2): 13, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925554

RESUMEN

The actual protective mechanisms underlying cardioprotection with remote ischemic conditioning (RIC) remain unclear. Recent data suggest that RIC induces kynurenine (KYN) and kynurenic acid synthesis, two metabolites derived from tryptophan (TRP), yet a causal relation between TRP pathway and RIC remains to be established. We sought to study the impact of RIC on the levels of TRP and its main metabolites within tissues, and to assess whether blocking kynurenine (KYN) synthesis from TRP would inhibit RIC-induced cardioprotection. In rats exposed to 40-min coronary occlusion and 2-h reperfusion, infarct size was significantly smaller in RIC-treated animals (35.7 ± 3.0% vs. 46.5 ± 2.2%, p = 0.01). This protection was lost in rats that received 1-methyl-tryptophan (1-MT) pretreatment, an inhibitor of KYN synthesis from TRP (infarct size = 46.2 ± 5.0%). Levels of TRP and nine compounds spanning its metabolism through the serotonin and KYN pathways were measured by reversed-phase liquid chromatography-tandem mass spectrometry in the liver, heart, and limb skeletal muscle, either exposed or not to RIC. In the liver, RIC induced a significant increase in xanthurenic acid, nicotinic acid, and TRP. Likewise, RIC increased NAD-dependent deacetylase sirtuin activity in the liver. Pretreatment with 1-MT suppressed the RIC-induced increases in NAD-dependent deacetylase sirtuin activity. Altogether, these findings indicate that RIC mechanism is dependent on TRP-KYN pathway activation.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Quinurenina/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Triptófano/metabolismo , Animales , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas Wistar
20.
Prog Neurobiol ; 184: 101698, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31557505

RESUMEN

The development of personalized medicine according to gender calls for the integration of sexual dimorphism in pre-clinical models of diseases. Although sexual dimorphism in the brain of the mouse has been the subject of several behavioral, neuroimaging and experimental studies, very few have characterized the bases of sexual dimorphism in the brain on the omics scale. In particular, physiological variations in metabolomic and lipidomic terms related to gender have not been mapped in the brain. We carried out a metabolomic analysis, targeting 188 metabolites representative of various cellular structures and metabolisms, in three brain regions: frontal cortex, brain stem and cerebellum, in 3-month-old C57BL-6 J male (n = 20) vs. female (n = 20) mice. Our results demonstrate the existence of sexual dimorphism in the whole brain as well as in separate brain regions. Half of the 129 accurately measured metabolites were involved in the sexual dimorphism of the murine brain, but only 8% of those (hydroxyproline, creatinine, hexoses, tryptophan, threonine and lysoPC.a.C18.2) were involved in common in the three cerebral regions, while 71%, including phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, acylcarnitines, amino acids, biogenic amines, and polyamines, were specific to only one region of the brain, underscoring the highly regional specificity of cerebral sexual dimorphism in mice.


Asunto(s)
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Lóbulo Frontal/metabolismo , Metabolómica , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...