Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 26(12): 269, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26507202

RESUMEN

In this study, chitosan-Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium foils and uniform chitosan films containing 25-55 wt% Laponite and 937-1655 µg/cm(2) vancomycin are obtained. Nanocomposite films exhibit improved cell attachment with higher cell viability. Alkaline phosphatase assay reveals enhanced cell proliferation due the gradual dissolution of Laponite particles into the culture medium. In-vitro drug-release studies show lower release rate through a longer period for the nanocomposite compared to pristine chitosan.


Asunto(s)
Antibacterianos/administración & dosificación , Proliferación Celular , Quitosano/administración & dosificación , Implantes de Medicamentos , Titanio/química , Antibacterianos/farmacocinética , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
2.
ACS Nano ; 7(7): 5757-62, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23786265

RESUMEN

Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated with varying solvents and ligands. In an analysis complementary to the mobility trends commonly extracted from field-effect transistor studies, we focus instead on the subthreshold regime and map out the density of trap states in these nanocrystal films. The findings point to the importance of comprehensively mapping the electronic band- and gap-structure within real quantum solids, and they suggest a new focus in investigating quantum dot solids with an aim toward improving optoelectronic device performance.


Asunto(s)
Coloides/química , Ensayo de Materiales/instrumentación , Nanoestructuras/química , Puntos Cuánticos , Transistores Electrónicos , Transporte de Electrón , Diseño de Equipo , Análisis de Falla de Equipo , Nanoestructuras/ultraestructura , Tamaño de la Partícula
3.
J Biomed Mater Res A ; 101(10): 2796-807, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23463703

RESUMEN

Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 µm) and micro- (∼25 µm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were also used to reveal the effect of particle size on the cell behavior. Observation of tissue growth and enzyme activity on two-dimensional (2D) films and three-dimensional (3D) scaffolds showed effects of nanoparticle inclusion and of surface curvature on the cellular adhesion, proliferation, and kinetics of preosteoblastic cells (MC3T3-E1) tissue growth into the pore channels. It was found that the presence of nanoparticles in the substrate impaired cellular adhesion and proliferation in 3D structures. Evaluation of alkaline phosphate activity showed that the presence of the hard particles affects differentiation of the cells on 2D films. Notwithstanding, the effect of particles on cell differentiation was not as strong as that seen by the curvature of the substrate. We observed different effects of nanofeatures on 2D structures with those of 3D scaffolds, which influence the cell proliferation and differentiation for non-load-bearing applications in bone regenerative medicine.


Asunto(s)
Nanopartículas/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Fluoresceína-5-Isotiocianato/metabolismo , Cinética , Ratones , Microscopía de Fuerza Atómica , Microscopía de Contraste de Fase , Nanopartículas/ultraestructura , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Faloidina/metabolismo , Estrés Mecánico , Propiedades de Superficie , Titanio/farmacología
4.
Adv Mater ; 25(12): 1769-73, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23293006

RESUMEN

Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...