Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 378(6625): 1194-1200, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36480602

RESUMEN

Chimeric antigen receptor (CAR) costimulatory domains derived from native immune receptors steer the phenotypic output of therapeutic T cells. We constructed a library of CARs containing ~2300 synthetic costimulatory domains, built from combinations of 13 signaling motifs. These CARs promoted diverse human T cell fates, which were sensitive to motif combinations and configurations. Neural networks trained to decode the combinatorial grammar of CAR signaling motifs allowed extraction of key design rules. For example, non-native combinations of motifs that bind tumor necrosis factor receptor-associated factors (TRAFs) and phospholipase C gamma 1 (PLCγ1) enhanced cytotoxicity and stemness associated with effective tumor killing. Thus, libraries built from minimal building blocks of signaling, combined with machine learning, can efficiently guide engineering of receptors with desired phenotypes.


Asunto(s)
Aprendizaje Automático , Biblioteca de Péptidos , Receptores Quiméricos de Antígenos , Linfocitos T Citotóxicos , Humanos , Fenotipo , Receptores Quiméricos de Antígenos/química , Receptores Quiméricos de Antígenos/inmunología , Transducción de Señal , Dominios Proteicos , Linfocitos T Citotóxicos/inmunología
2.
Elife ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377786

RESUMEN

Opioid tolerance is well-described physiologically but its mechanistic basis remains incompletely understood. An important site of opioid action in vivo is the presynaptic terminal, where opioids inhibit transmitter release. This response characteristically resists desensitization over minutes yet becomes gradually tolerant over hours, and how this is possible remains unknown. Here, we delineate a cellular mechanism underlying this longer-term form of opioid tolerance in cultured rat medium spiny neurons. Our results support a model in which presynaptic tolerance is mediated by a gradual depletion of cognate receptors from the axon surface through iterative rounds of receptor endocytosis and recycling. For the µ-opioid receptor (MOR), we show that the agonist-induced endocytic process which initiates iterative receptor cycling requires GRK2/3-mediated phosphorylation of the receptor's cytoplasmic tail, and that partial or biased agonist drugs with reduced ability to drive phosphorylation-dependent endocytosis in terminals produce correspondingly less presynaptic tolerance. We then show that the δ-opioid receptor (DOR) conforms to the same general paradigm except that presynaptic endocytosis of DOR, in contrast to MOR, does not require phosphorylation of the receptor's cytoplasmic tail. Further, we show that DOR recycles less efficiently than MOR in axons and, consistent with this, that DOR tolerance develops more strongly. Together, these results delineate a cellular basis for the development of presynaptic tolerance to opioids and describe a methodology useful for investigating presynaptic neuromodulation more broadly.


Asunto(s)
Analgésicos Opioides , Receptores Opioides delta , Ratas , Animales , Analgésicos Opioides/farmacología , Tolerancia a Medicamentos , Transducción de Señal , Endocitosis/fisiología
3.
Sci Transl Med ; 13(591)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910979

RESUMEN

Treatment of solid cancers with chimeric antigen receptor (CAR) T cells is plagued by the lack of ideal target antigens that are both absolutely tumor specific and homogeneously expressed. We show that multi-antigen prime-and-kill recognition circuits provide flexibility and precision to overcome these challenges in the context of glioblastoma. A synNotch receptor that recognizes a specific priming antigen, such as the heterogeneous but tumor-specific glioblastoma neoantigen epidermal growth factor receptor splice variant III (EGFRvIII) or the central nervous system (CNS) tissue-specific antigen myelin oligodendrocyte glycoprotein (MOG), can be used to locally induce expression of a CAR. This enables thorough but controlled tumor cell killing by targeting antigens that are homogeneous but not absolutely tumor specific. Moreover, synNotch-regulated CAR expression averts tonic signaling and exhaustion, maintaining a higher fraction of the T cells in a naïve/stem cell memory state. In immunodeficient mice bearing intracerebral patient-derived xenografts (PDXs) with heterogeneous expression of EGFRvIII, a single intravenous infusion of EGFRvIII synNotch-CAR T cells demonstrated higher antitumor efficacy and T cell durability than conventional constitutively expressed CAR T cells, without off-tumor killing. T cells transduced with a synNotch-CAR circuit primed by the CNS-specific antigen MOG also exhibited precise and potent control of intracerebral PDX without evidence of priming outside of the brain. In summary, by using circuits that integrate recognition of multiple imperfect but complementary antigens, we improve the specificity, completeness, and persistence of T cells directed against glioblastoma, providing a general recognition strategy applicable to other solid tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Glioblastoma/terapia , Inmunoterapia Adoptiva , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Metab ; 1(8): 790-810, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31485561

RESUMEN

A moderate reduction of body temperature can induce a remarkable lifespan extension. Here we examine the link between cold temperature, germ line fitness and organismal longevity. We show that low temperature reduces age-associated exhaustion of germ stem cells (GSCs) in Caenorhabditis elegans, a process modulated by thermosensory neurons. Notably, robust self-renewal of adult GSCs delays reproductive aging and is required for extended lifespan at cold temperatures. These cells release prostaglandin E2 (PGE2) to induce cbs-1 expression in the intestine, increasing somatic production of hydrogen sulfide (H2S), a gaseous signaling molecule that prolongs lifespan. Whereas loss of adult GSCs reduces intestinal cbs-1 expression and cold-induced longevity, application of exogenous PGE2 rescues these phenotypes. Importantly, tissue-specific intestinal overexpression of cbs-1 mimics cold-temperature conditions and extends longevity even at warm temperatures. Thus, our results indicate that GSCs communicate with somatic tissues to coordinate extended reproductive capacity with longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Prostaglandinas/metabolismo , Transducción de Señal , Células Madre/metabolismo , Animales
5.
Sci Adv ; 5(4): eaaw0025, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30989118

RESUMEN

Somatic cells can be reprogrammed into pluripotent stem cells using the Yamanaka transcription factors. Reprogramming requires both epigenetic landscape reshaping and global remodeling of cell identity, structure, basic metabolic processes, and organelle form and function. We hypothesize that variable regulation of the proteostasis network and its influence upon the protein-folding environment within cells and their organelles is responsible for the low efficiency and stochasticity of reprogramming. We find that the unfolded protein response of the endoplasmic reticulum (UPRER), the mitochondrial UPR, and the heat shock response, which ensure proteome quality during stress, are activated during reprogramming. The UPRER is particularly crucial, and its ectopic, transient activation, genetically or pharmacologically, enhances reprogramming. Last, stochastic activation of the UPRER predicts reprogramming efficiency in naïve cells. Thus, the low efficiency and stochasticity of cellular reprogramming are due partly to the inability to properly initiate the UPRER to remodel the ER and its proteome.


Asunto(s)
Reprogramación Celular , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/fisiología , Fibroblastos/citología , Respuesta al Choque Térmico , Células Madre Pluripotentes Inducidas/citología , Respuesta de Proteína Desplegada , Células Cultivadas , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Proteoma/análisis , Transducción de Señal
6.
Cell Stem Cell ; 22(5): 619-620, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727677

RESUMEN

Recently in Science, Leeman et al. find that perturbing lysosomal activity of quiescent NSCs directly impedes their ability to become activated, similar to what happens during aging. Excitingly, they could rejuvenate old quiescent NSCs by enhancing the lysosome pathway, ameliorating their ability to clear protein aggregates and become activated.


Asunto(s)
Células-Madre Neurales , División Celular , Lisosomas
7.
Cell ; 166(6): 1539-1552.e16, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610574

RESUMEN

Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding.


Asunto(s)
Citosol/fisiología , Respuesta al Choque Térmico/fisiología , Lípidos/biosíntesis , Mitocondrias/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Metabolismo de los Lípidos/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Pliegue de Proteína
8.
Cell Rep ; 12(7): 1196-1204, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26257177

RESUMEN

Integrating stress responses across tissues is essential for the survival of multicellular organisms. The metazoan nervous system can sense protein-misfolding stress arising in different subcellular compartments and initiate cytoprotective transcriptional responses in the periphery. Several subcellular compartments possess a homotypic signal whereby the respective compartment relies on a single signaling mechanism to convey information within the affected cell to the same stress-responsive pathway in peripheral tissues. In contrast, we find that the heat shock transcription factor, HSF-1, specifies its mode of transcellular protection via two distinct signaling pathways. Upon thermal stress, neural HSF-1 primes peripheral tissues through the thermosensory neural circuit to mount a heat shock response. Independent of this thermosensory circuit, neural HSF-1 activates the FOXO transcription factor, DAF-16, in the periphery and prolongs lifespan. Thus a single transcription factor can coordinate different stress response pathways to specify its mode of protection against changing environmental conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Respuesta al Choque Térmico , Longevidad , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transducción de Señal , Factores de Transcripción/genética
9.
Science ; 346(6207): 360-3, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25324391

RESUMEN

The conserved heat shock transcription factor-1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/farmacología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Citoesqueleto/fisiología , Respuesta al Choque Térmico/fisiología , Longevidad , Factores de Transcripción/fisiología , Troponina C/farmacología , Actinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citoesqueleto/ultraestructura , Respuesta al Choque Térmico/genética , Calor , Interferencia de ARN , Factores de Transcripción/genética , Troponina C/genética
10.
Trends Cell Biol ; 24(3): 161-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24094931

RESUMEN

The accumulation of misfolded or damaged proteins is an important determinant of the aging process. Mechanisms that promote the homeostasis of the proteome, or proteostasis, can slow aging and decrease the incidence of age-related diseases. Adult stem cell function declines during the aging process of an organism. This demise of somatic stem cell function could contribute to tissue degeneration and organismal aging. Accumulation of damaged proteins in embryonic stem cells (ESCs) may also have an impact on the aging process, because the passage of these proteins to progenitor cells during asymmetric division could compromise development and aging. Therefore, proteostasis maintenance in stem cells might have an important role in organismal aging. In this review, we discuss exciting new insights into stem cell aging and proteostasis and the questions raised by these findings.


Asunto(s)
Senescencia Celular/genética , Células Madre Embrionarias/citología , Proteolisis , Estrés Fisiológico/genética , Células Madre Embrionarias/fisiología , Humanos , Longevidad/genética , Pliegue de Proteína , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA