Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e26069, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420460

RESUMEN

This work presents a novel approach towards integrating electronic components with textiles, by successfully creating a fully textile-based element that is capable of detecting applied forces by variation in its resistance value. The fabrication of the device consists of a specialized siliconized conductive fabric, which is placed above and below a layer of switch fabric, which acts as a force sensor. In this paper, the effects of three different geometries are observed, as well as the washability of the device, along with tension testing. Μoreover, the device behavior is simulated as well as applied in a real-life scenario. The proposed element demonstrates a good dynamic range, high repeatability and stability, and minimal impact of washing, creating a great candidate for integration in e-textiles.

2.
Sci Rep ; 13(1): 5070, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977800

RESUMEN

A novel method for embedded hardware-based parameter estimation of the Cole model of bioimpedance is developed and presented. The model parameters R∞, R1 and C are estimated using the derived set of equations based on measured values of real (R) and imaginary part (X) of bioimpedance, as well as the numerical approximation of the first derivative of quotient R/X with respect to angular frequency. The optimal value for parameter α is estimated using a brute force method. The estimation accuracy of the proposed method is very similar with the relevant work from the existing literature. Moreover, performance evaluation was performed using the MATLAB software installed on a laptop, as well as on the three embedded-hardware platforms (Arduino Mega2560, Raspberry Pi Pico and XIAO SAMD21). Obtained results showed that the used platforms can perform reliable bioimpedance processing with the same accuracy, while Raspberry Pi Pico is the fastest solution with the smallest energy consumption.

3.
J Mater Sci ; 58(4): 1680-1693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687141

RESUMEN

Owing to the rapid development in the field of e-textile-based flexible and portable sensors, the present work demonstrates a fully textile-based stretchable face mask humidity sensor which was created using digital embroidery technique. The design of the sensor was comprised of interdigitated structured electrodes made up of polymer core-based conductive silver-coated threads and hygroscopic threads embedded between them. The fabricated sensor performed well towards moisture detection in accordance with the principle where resistance of the face mask sensor decreased with the increase in the relative humidity along with the changing operational frequency in the range from 1 Hz to 200 kHz. The electrical response (resistance, impedance, capacitance and phase angle) of the novel thread-based sensor towards change in relative humidity was recorded and showed in the present work. The embroidery of polymer-based threads onto the face mask towards humidity sensing offers a novel wearable platform for more extended biomedical applications for detection of various breath biomarkers and thus early diagnosis of diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-08135-2.

4.
ACS Omega ; 7(49): 44928-44938, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530326

RESUMEN

The COVID-19 pandemic has created a situation where wearing personal protective masks is a must for every human being and introduced them as a part of everyday life. This work demonstrates a new functionality embedded in single-use face masks through an embroidered humidity sensor. The design of the face mask humidity sensor is comprised of interdigitated electrodes made of polyamide-based conductive threads and common polyester threads which act as a dielectric sensing layer embroidered between them. Therefore, the embroidered sensor acts as a capacitor, the performance of which was studied in increasing humidity conditions in the frequency range from 1 Hz to 100 kHz. The moisture adsorbed by sensitive hygroscopic polyester threads altered their dielectric and permittivity properties which were detected by the change in capacitance values of the face mask sensors at different relative humidity (RH) levels. The calculated limit of detection (LOD) values for the two proposed sensors at different frequencies (1, 10, and 100 kHz) were found in the range from 11.46% RH-27.41% RH and 29.79% RH-38.65% RH. The tested sensors showed good repeatability and stability under different humidity conditions over a period of 80 min. By employing direct embroidery of silver-coated polyamide conductive threads and moisture-sensitive polyester threads onto the face mask, the present work exploits the application of polymer-based textile materials in developing novel stretchable sensing devices toward e-textile applications.

5.
Biosensors (Basel) ; 12(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36551136

RESUMEN

Drug delivery systems are engineered platforms for the controlled release of various therapeutic agents. This paper presents a conductive gold leaf-based microfluidic platform fabricated using xurography technique for its potential implication in controlled drug delivery operations. To demonstrate this, peppermint and eucalyptus essential oils (EOs) were selected as target fluids, which are best known for their medicinal properties in the field of dentistry. The work takes advantage of the high conductivity of the gold leaf, and thus, the response characteristics of the microfluidic chip are studied using electrochemical impedance spectroscopy (EIS) upon injecting EOs into its micro-channels. The effect of the exposure time of the chip to different concentrations (1% and 5%) of EOs was analyzed, and change in electrical resistance was measured at different time intervals of 0 h (the time of injection), 22 h, and 46 h. It was observed that our fabricated device demonstrated higher values of electrical resistance when exposed to EOs for longer times. Moreover, eucalyptus oil had stronger degradable effects on the chip, which resulted in higher electrical resistance than that of peppermint. 1% and 5% of Eucalyptus oil showed an electrical resistance of 1.79 kΩ and 1.45 kΩ at 10 kHz, while 1% and 5% of peppermint oil showed 1.26 kΩ and 1.07 kΩ of electrical resistance at 10 kHz respectively. The findings obtained in this paper are beneficial for designing suitable microfluidic devices to expand their applications for various biomedical purposes.


Asunto(s)
Aceites Volátiles , Aceites Volátiles/química , Aceite de Eucalipto , Espectroscopía Dieléctrica , Oro , Microfluídica , Hojas de la Planta
6.
ACS Omega ; 7(50): 47214-47224, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570303

RESUMEN

Personal heating systems are getting increasing interest because of the need to reduce the negative impact of cold weather on the health of people and animals. Heating the air before inhalation is of great importance as it can reduce the probability of various diseases. In this paper, we present a textile-based heater composed of commercial conductive threads, embroidered on an ordinary protective facemask. We also present the design and implementation details of the temperature monitoring and controlling circuit. Air temperature inside the facemask was monitored by a thermocouple placed in close proximity to the nose (nostrils). Preliminary testing revealed that the difference among temperatures in repeated heating cycles is in the range of ±1.5 °C. The response time for temperature increase from 29.9 to 40.5 °C was about 4 min, while the recovery time from 40.5 to 31.3 °C was about 4.3 min. Safety for human use and wireless data transmission to an application installed on a mobile phone are also demonstrated.

7.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365576

RESUMEN

In recent years, after the ongoing success in the creation of portable electronic devices, an increasing effort has been put in creating wearable devices capable of sensing multiple parameters while being imperceptible to the user. A field that has recently gained attention due to this is that of textile electronics. For this purpose, one of the most commonly used materials is conductive threads, capable of sustaining an electrical connection, while at the same time being part of a garment. As research on the performance and stability of such threads is scarce, the aim of this work is to study the effects of tension on readily available conductive threads and to verify their suitability and reliability for e-textile applications. After testing seven commercially available threads, this study demonstrates that the nominal parameters provided by the manufacturers are not in line with experimentation, and that both embroidery and washing have an impact on their performance.

8.
Chem Rev ; 122(21): 16329-16363, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-35981266

RESUMEN

Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.


Asunto(s)
Prótesis e Implantes , Humanos
9.
Pharmaceutics ; 14(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35745717

RESUMEN

So far, various approaches have been proposed to improve dermal drug delivery. The use of chemical penetration enhancers has a long history of application, while methods based on the electrical current (such as iontophoresis) stand out as promising "active" techniques. Aiming to evaluate the contribution of different approaches to dermal delivery, in this work curcumin-loaded nanoemulsions with and without monoterpenes (eucalyptol or pinene) as chemical penetration enhancers, and a custom-made adhesive dermal delivery system based on iontophoresis were designed and assessed. In an in vivo study applying skin bioengineering techniques, their safety profile was proven. Three examined iontophoresis protocols, with total skin exposure time of 15 min (continuous flow for 15 min (15-0); 3 min of continuous flow and 2 min pause (3-2; 5 cycles) and 5 min of continuous flow and 1 min pause (5-1; 3 cycles) were equally efficient in terms of the total amount of curcumin that penetrated through the superficial skin layers (in vivo tape stripping) (Q3-2 = 7.04 ± 3.21 µg/cm2; Q5-1 = 6.66 ± 2.11 µg/cm2; Q15-0 = 6.96 ± 3.21 µg/cm2), significantly more efficient compared to the referent nanoemulsion and monoterpene-containing nanoemulsions. Further improvement of an efficient mobile adhesive system for iontophoresis would be a practical contribution in the field of dermal drug application.

10.
Biosensors (Basel) ; 12(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35624640

RESUMEN

Respiration monitoring is a very important indicator of health status. It can be used as a marker in the recognition of a variety of diseases, such as sleep apnea, asthma or cardiac arrest. The purpose of the present study is to overcome limitations of the current state of the art in the field of respiration monitoring systems. Our goal was the development of a lightweight handheld device with portable operation and low power consumption. The proposed approach includes a textile capacitive sensor with interdigitated electrodes embroidered into the facemask, integrated with readout electronics. Readout electronics is based on the direct interface of the capacitive sensor and a microcontroller through just one analog and one digital pin. The microcontroller board and sensor are powered by a smartphone or PC through a USB cable. The developed mobile application for the Android™ operating system offers reliable data acquisition and acts as a bridge for data transfer to the remote server. The embroidered sensor was initially tested in a humidity-controlled chamber connected to a commercial impedance analyzer. Finally, in situ testing with 10 volunteering subjects confirmed stable operation with reliable respiration monitoring.


Asunto(s)
Máscaras , Respiración , Humanos , Monitoreo Fisiológico , Teléfono Inteligente , Textiles
11.
Materials (Basel) ; 14(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34947407

RESUMEN

Wearable sensors have become part of our daily life for health monitoring. The detection of moisture content is critical for many applications. In the present research, textile-based embroidered sensors were developed that can be integrated with a bandage for wound management purposes. The sensor comprised an interdigitated electrode embroidered on a cotton substrate with silver-tech 150 and HC 12 threads, respectively, that have silver coated continuous filaments and 100% polyamide with silver-plated yarn. The said sensor is a capacitive sensor with some leakage. The change in the dielectric constant of the substrate as a result of moisture affects the value of capacitance and, thus, the admittance of the sensor. The moisture sensor's operation is verified by measuring its admittance at 1 MHz and the change in moisture level (1-50) µL. It is observed that the sensitivity of both sensors is comparable. The identically fabricated sensors show similar response and sensitivity while wash test shows the stability of sensor after washing. The developed sensor is also able to detect the moisture caused by both artificial sweat and blood serum, which will be of value in developing new sensors tomorrow for smart wound-dressing applications.

12.
Chemosphere ; 273: 129646, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33493813

RESUMEN

Humanitarian demining is a worldwide effort and the range of climates and environments prevent any one detection method being suitable for all sites, so more tools are required for safe and efficient explosives sensing. Landmines emit a chemical flux over time, and honeybees can collect the trace residues of explosives (as particles or as vapour) on their body hairs. This capability was exploited using a passive method allowing the honeybees to freely forage in a mined area, where trace explosives present in the environment stuck to the honeybee body, which were subsequently transferred onto an adsorbent material for analysis by a fluorescent polymer sensor. Potential false positive sources were investigated, namely common bee pheromones, the anti-varroa pesticide Amitraz, and the environment around a clean apiary, and no significant response was found to any from the sensor. The mined site gave a substantial response in the optical sensor films, with quenching efficiencies of up to 38%. A model was adapted to estimate the mass of explosives returned to the colony, which may be useful for estimating the number of mines in a given area.


Asunto(s)
Sustancias Explosivas , Varroidae , Animales , Abejas , Monitoreo Biológico , Feromonas
13.
Sensors (Basel) ; 20(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171890

RESUMEN

This study aims to discuss the synthesis and fabrication of SnO2-In2O3-based thick-films and their biosensing applications. The structural characterization of SnO2-In2O3 nanocomposites was performed using X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Furthermore, the screen-printing technology was used in the fabrication of conductive electrodes to form an interdigitated capacitive structure, and the sensor layer based on the mixture of SnO2 and In2O3. Moreover, the sensing performance of the developed structure was tested using Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria. In addition, the validation of sensing characteristics was performed by electrochemical impedance spectroscopic and self-resonant frequency analysis. Finally, the sensing properties were analyzed for two consecutive days, and changes in both P. aeruginosa and S. aureus pathogens growing media were also studied.


Asunto(s)
Nanocompuestos , Staphylococcus aureus , Técnicas Biosensibles , Electrodos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...