Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(16): 3230-3236, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38564238

RESUMEN

Natural linear polyamines play diverse roles in physiological processes by interacting with receptors at the cellular level. Herein, we describe the stereodivergent synthesis of oligopyrrolidines, which are conformationally constrained polyamines. We synthesized dimeric and trimeric 2-oxo-oligopyrrolidines using an iterative coupling strategy. The key to our success is an iridium-catalyzed trans/cis-selective nucleophilic addition and subsequent threo/erythro-stereoselective reduction. The synthesized pyrrolidines show varying cytotoxicities against a human cancer cell line depending on the number of rings and their stereochemistry.

2.
Oncol Res ; 32(4): 607-614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560568

RESUMEN

C-mannosylation is a post-translational modification that occurs intracellularly in the endoplasmic reticulum. In humans, biosynthesis of C-mannosylation in proteins containing thrombospondin type 1 repeat is catalyzed by the DPY19 family; nonetheless, biological functions of protein C-mannosylation are not yet fully understood, especially in tumor progression. Vasculogenic mimicry (VM) is the formation of fluid-conducting channels by highly invasive and genetically deregulated tumor cells, enabling the tumors to form matrix-embedded vasculogenic structures, containing plasma and blood cells to meet the metabolic demands of rapidly growing tumors. In this study, we focused on DPY19L3, a C-mannosyltransferase, and aimed to unravel its role in VM. Knockout of DPY19L3 inhibited the formation of VM in HT1080 human fibrosarcoma cells. Re-expression of wild-type DPY19L3 recovered VM formation; however, DPY19L3 isoform2, an enzymatic activity-defect mutant, did not restore it, suggesting that the C-mannosyltransferase activity of DPY19L3 is crucial to its function. Furthermore, the knockdown of DPY19L3 in MDA-MB-231 breast cancer cells hindered its network formation ability. Altogether, our findings suggest that DPY19L3 is required for VM formation and stipulate the relevance of C-mannosylation in oncogenesis.


Asunto(s)
Neoplasias de la Mama , Manosiltransferasas , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
3.
Bioorg Med Chem Lett ; 104: 129713, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38522588

RESUMEN

Basidalin, isolated from the basidiomycete Leucoagaricus naucina, has previously demonstrated antibacterial and antitumor properties against murine cancer cells in vivo, but its effects on human cancer cells remain unknown. In this study, we found that basidalin possesses antiproliferative activity against human cancer cell lines. To elucidate the antiproliferative mechanism of basidalin, we focused on autophagy. Treatment with basidalin led to an increase in LC3-II expression level, and accelerated autophagic flux through an mTOR-independent pathway. Moreover, according to the structure-activity relationship analysis-including newly synthesized basidalin analogs-the formyl group, not the amino group, contributes to the antiproliferative activities of basidalin against human cancer cells. Additionally, the antiproliferative activity of basidalin analogs was strongly correlated with autophagy-inducing activity, indicating that basidalin exhibits antiproliferative activity through autophagy induction. These data suggest that basidalin, characterized by its ability to upregulate autophagic flux, emerges as a novel anticancer drug.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Ratones , Animales , Antineoplásicos/farmacología , Línea Celular , Autofagia , Línea Celular Tumoral , Apoptosis , Furanos
4.
Anal Sci ; 40(3): 501-510, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142247

RESUMEN

DNA analysis in water samples is attracting attention in various fields. However, conventional methods for DNA analysis require a work-intensive and time-consuming sample pre-treatment. In this study, a simplified pre-treatment method for analyzing DNA in water samples was evaluated. The process consists of filtration, DNA extraction, and amplification, which can be achieved within a short time. In the filtration process, two types of filters, firstly a tissue paper (Kimwipe) and then a glass filter (GF/F), were used in sequence. The first large pore size filter enabled a reduction in filtration time by removing large particulate matter impurities present in river water matrix. Cells spiked into 1 L of river water were recovered at more than 90% within approximately 5 min filtration time. Also, DNA was extracted from the captured cells directly on the surface of the filter in only 5 min. Thus, DNA collection and extraction from a water sample can be completed within about 10 min. Furthermore, PCR amplification was performed directly from DNA-attached filter sections, which greatly reduced the number of required pre-treatment steps. Finally, we succeeded in establishing a simple and fast on-site pre-treatment system by using a hand-driven syringe filtration method. This pre-treatment system is expected to offer the possibility for the future establishment of a rapid and easy DNA analysis method applicable to various types of water samples.


Asunto(s)
ADN , Agua Dulce , ADN/genética , Filtración/métodos , Agua
6.
FEBS J ; 290(22): 5373-5394, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552474

RESUMEN

Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins. PMEL has one putative C-mannosylation site in its core amyloid fragment (CAF); however, there is no report focusing on C-mannosylation of PMEL. To investigate this, we expressed recombinant PMEL in SK-MEL-28 human melanoma cells and purified the protein. Mass spectrometry analyses demonstrated that human PMEL is C-mannosylated at multiple tryptophan residues in its CAF and N-terminal fragment (NTF). In addition to the W153 or W156 residue (CAF), which lies in the consensus sequence for C-mannosylation, the W104 residue (NTF) was C-mannosylated without the consensus sequence. To determine the effects of the modifications, we deleted the PMEL gene by using CRISPR/Cas9 technology and re-expressed wild-type or C-mannosylation-defective mutants of PMEL, in which the C-mannosylated tryptophan was replaced with a phenylalanine residue (WF mutation), in SK-MEL-28 cells. Importantly, fibril-containing melanosomes were significantly decreased in W104F mutant PMEL-re-expressing cells compared with wild-type PMEL, observed using transmission electron microscopy. Furthermore, western blot and immunofluorescence analysis suggested that the W104F mutation may cause mild endoplasmic reticulumretention, possibly associated with early misfolding, and lysosomal misaggregation, thus reducing functional fibril formation. Our results demonstrate that C-mannosylation of PMEL is required for proper melanosome development by regulating PMEL-derived fibril formation.


Asunto(s)
Amiloide , Triptófano , Humanos , Glicosilación , Triptófano/genética , Triptófano/metabolismo , Amiloide/química , Melanosomas/genética , Melanosomas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Amiloidogénicas/metabolismo , Antígeno gp100 del Melanoma/genética , Antígeno gp100 del Melanoma/química , Antígeno gp100 del Melanoma/metabolismo
7.
Neurosci Res ; 195: 37-51, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37141946

RESUMEN

Long interspersed nuclear element-1 (LINE-1, L1) affects the transcriptome landscape in multiple ways. Promoter activity within its 5'UTR plays a critical role in regulating diverse L1 activities. However, the epigenetic status of L1 promoters in adult brain cells and their relationship with psychiatric disorders remain poorly understood. Here, we examined DNA methylation and hydroxymethylation of the full-length L1s in neurons and nonneurons and identified "epigenetically active" L1s. Notably, some of epigenetically active L1s were retrotransposition competent, which even had chimeric transcripts from the antisense promoters at their 5'UTRs. We also identified differentially methylated L1s in the prefrontal cortices of patients with psychiatric disorders. In nonneurons of bipolar disorder patients, one L1 was significantly hypomethylated and showed an inverse correlation with the expression level of the overlapping gene NREP. Finally, we observed that altered DNA methylation levels of L1 in patients with psychiatric disorders were not affected by the surrounding genomic regions but originated from the L1 sequences. These results suggested that altered epigenetic regulation of the L1 5'UTR in the brain was involved in the pathophysiology of psychiatric disorders.


Asunto(s)
Epigénesis Genética , Trastornos Mentales , Humanos , Regiones no Traducidas 5' , Elementos de Nucleótido Esparcido Largo/genética , Encéfalo , Trastornos Mentales/genética
8.
FEBS Lett ; 597(8): 1114-1124, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737242

RESUMEN

Vasculogenic mimicry (VM) is the formation of microvascular channels by cancer cells. VM requires cellular processes that are regulated by changes in cellular migration and morphology. Cofilin (CFL), a key regulator of actin depolymerization, has been reported to affect malignant phenotypes of cancer. We show that treatment with inhibitors of actin dynamics suppresses VM in MDA-MB-231 human breast cancer cells. We established CFL-knockout (KO) MDA-MB-231 cells and found that VM was attenuated in CFL-KO cells. Although the re-expression of wild-type CFL restored VM in CFL-KO cells, inactive phosphomimetic CFL failed to do so. Collectively, our results demonstrate that CFL is a critical regulator of VM and implicate CFL as a novel therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Citoesqueleto de Actina , Factores Despolimerizantes de la Actina , Actinas , Neoplasias de la Mama/patología , Línea Celular Tumoral , Neovascularización Patológica/genética
9.
FEBS Open Bio ; 13(3): 490-499, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680395

RESUMEN

C-mannosylation is a rare type of protein glycosylation whereby a single mannose is added to the first tryptophan in the consensus sequence Trp-Xaa-Xaa-Trp/Cys (in which Xaa represents any amino acid). Its consensus sequence is mainly found in proteins containing a thrombospondin type-1 repeat (TSR1) domain and in type I cytokine receptors. In these proteins, C-mannosylation affects protein secretion, intracellular localization, and protein stability; however, the role of C-mannosylation in proteins that are not type I cytokine receptors and/or do not contain a TSR1 domain is less well explored. In this study, we focused on human vitelline membrane outer layer protein 1 homolog (VMO1). VMO1, which possesses two putative C-mannosylation sites, is a 21-kDa secreted protein that does not contain a TSR1 domain and is not a type I cytokine receptor. Mass spectrometry analyses revealed that VMO1 is C-mannosylated at Trp105 but not at Trp44 . Although C-mannosylation does not affect the extracellular secretion of VMO1, it destabilizes the intracellular VMO1. In addition, a structural comparison between VMO1 and C-mannosylated VMO1 showed that the modification of the mannose changes the conformation of three loops in VMO1. Taken together, our results demonstrate the first example of C-mannosylation for protein destabilization of VMO1.


Asunto(s)
Manosa , Membrana Vitelina , Humanos , Glicosilación , Manosa/metabolismo , Membrana Vitelina/metabolismo , Transporte de Proteínas , Receptores de Citocinas/metabolismo
10.
FEBS J ; 290(1): 196-208, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35942636

RESUMEN

C-mannosylation is a unique type of protein glycosylation via C-C linkage between an α-mannose and a tryptophan residue. This modification has been identified in about 30 proteins and regulates several functions, such as protein secretion and intracellular localization, as well as protein stability. About half of C-mannosylated proteins are categorized as proteins containing thrombospondin type 1 repeat domain or type I cytokine receptors. To evaluate whether C-mannosylation broadly affects protein functions regardless of protein domain or family, we have sought to identify other types of C-mannosylated protein and analyse their functions. In this study, we focused on receptor activity modifying protein 1, which neither contains thrombospondin type 1 repeat domain nor belongs to the type I cytokine receptors. Our mass spectrometry analysis demonstrated that RAMP1 is C-mannosylated at Trp56 . It has been shown that RAMP1 transports to the plasma membrane after dimerization with calcitonin receptor-like receptor and is important for ligand-dependent downstream signalling activation. Our results showed that C-mannosylation has no effect on this transport activity. On the other hand, C-mannosylation did enhance protein stability and cell migration activity. Our data may provide new insight into both C-mannosylation research and novel RAMP1 analysis.


Asunto(s)
Receptores de Citocinas , Trombospondinas , Glicosilación , Membrana Celular , Movimiento Celular
11.
Org Lett ; 24(25): 4547-4551, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35713373

RESUMEN

Caldorazole (1) was isolated from the marine cyanobacterium Caldora sp. collected on Ishigaki Island, Okinawa, Japan. Its structure was determined to be a new polyketide that contained two thiazole rings and an O-methylenolpyruvamide moiety. Caldorazole (1) showed strong cytotoxicity toward tumor cells that had been seeded at a high density. Cell death induced by 1 in HeLa and A431 cells was also observed only in the presence of the glycolysis blocker 2-deoxy-d-glucose (2DG). Co-treatment with 1 and 2DG remarkably decreased ATP levels in these cells. Furthermore, 1 selectively inhibited complex I in the mitochondrial respiratory chain. Thus, 1 was demonstrated to exert cytotoxicity toward human tumor cells by blocking mitochondrial respiration.


Asunto(s)
Glucosa , Policétidos , Desoxiglucosa/farmacología , Glucólisis , Humanos , Policétidos/farmacología , Tiazoles/farmacología
12.
13.
Bioorg Med Chem ; 68: 116857, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661849

RESUMEN

Africane-type sesquiterpenoids are a unique tricyclic carbon architecture sesquiterpenoid isolated as natural products. Δ9(15) -africanene has been reported to exhibit anti-inflammatory activity for carrageenan-induced rat foot edema. In this study, we reported structure-activity relationship study of africane-type sesquiterpenoids and found that some africane-type sesquiterpenoid analogs and their synthetic intermediate showed potent anti-inflammatory activity. To identify the mode of action of africane-type sesquiterpenoids and their synthetic intermediate, we evaluated the anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells. Treatment with the africane-type compounds and their synthetic intermediate suppressed LPS-induced expressions of Cox-2 protein and mRNAs of the inflammatory cytokines IL-1ß and IL-6 at the concentrations that did not affect cell viability. Interestingly, although these africane-type compounds and their synthetic intermediate suppressed the pro-inflammatory cytokines' expressions, the compounds did not modulate NF-κB activation. These results suggest that the africane-type compounds and their synthetic intermediate are anti-inflammatory compounds that suppress the expression of LPS-induced inflammatory mediators independently of NF-κB activation.


Asunto(s)
Lipopolisacáridos , Sesquiterpenos , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Sesquiterpenos/farmacología
14.
Oncol Lett ; 23(5): 169, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35496574

RESUMEN

Melanoma is a type of skin cancer that derives from melanocytes; this tumor is highly metastatic and causes poor clinical outcomes in patients. Vasculogenic mimicry (VM), a vascular-like network that is formed by tumor cells instead of endothelial cells, promotes the growth and metastasis of tumors by providing tumors with oxygen- and nutrient-containing blood. VM correlates with a poor prognosis in patients with melanoma, but the melanoma-specific mechanisms of VM are unknown. The present study revealed that treatment with the melanogenesis stimulators 3-isobutyl 1-methylxanthine (IBMX) and α-melanocyte-stimulating hormone (α-MSH) significantly inhibited VM in MNT-1 human pigmented melanoma cells. Tyrosinase (TYR), an essential enzyme in melanin production, was upregulated on treatment with α-MSH and IBMX, prompting an examination of the association between TYR and VM. A TYR inhibitor, arbutin, promoted VM in melanoma cells. Furthermore, CRISPR/Cas9-mediated knockout (KO) of TYR increased VM by melanoma cells. Notably, even in non-pigmented melanoma cells, TYR attenuated VM. Although re-expression of wild-type TYR suppressed VM in TYR-KO cells, T373K TYR, a frequently detected mutation in individuals with albinism, failed to inhibit VM. Overall, these results demonstrated that TYR negatively regulates VM, providing novel insights into the antioncogenic function of TYR in melanomas.

15.
Biochim Biophys Acta Gen Subj ; 1866(3): 130084, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999116
16.
Bioorg Med Chem Lett ; 60: 128589, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35093502

RESUMEN

Humulanolides are natural products isolated from Asteriscus, and the isolation and total synthesis of many types of humulanolides have been reported. In this study, we evaluated anti-proliferative activity of twelve humulanolides against various human cancer cell lines and found that humulanolide analog E, which was newly designed and synthesized, exhibited the highest anti-proliferative activity. Structure-activity relationship analysis revealed that α,ß-unsaturated carbonyl moieties in humulanolides play an important role for anti-proliferative activity. To identify molecular targets of humulanolide analog E, we investigated various cell-based and in vitro assays. Treatment with humulanolide analog E against human fibrosarcoma HT1080 cells increased the expression level of HSP70 protein and decreased the levels of AKT and CDK4, which are HSP90 client proteins. Moreover, humulanolide analog E inhibited refolding of denatured luciferase protein via suppression of HSP90 activity in vitro. These results suggest that humulanolide analog E possesses the anti-proliferative activity against human cancer cells by inhibiting HSP90 functions.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Asteraceae/química , Productos Biológicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad
17.
Chem Biodivers ; 19(3): e202100890, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35018704

RESUMEN

Practical total syntheses of africane-type sesquiterpenoids were realized by reexamination of a divergent strategy employing optimized three-component coupling followed by ring-closing metathesis and substrate-controlled cyclopropanation. This sequential eight-step conversion provided Δ9(15) -africanene, a common bicyclo[5.3.0]decane intermediate for the syntheses of africane derivatives, in more than twice the yield as in the previous approach. The scalability and robustness of this improved synthetic route were confirmed by gram-scale preparation of Δ9(15) -africanene. In vitro cell-based assays of the synthesized africane-type sesquiterpenoids disclosed that ester-incorporating derivatives showed cytotoxic activity against HeLa cells. The effect of relative and absolute configuration of africane-9,15-diol monoacetates on the cytotoxicity against HeLa cells was also investigated.


Asunto(s)
Sesquiterpenos , Células HeLa , Humanos , Sesquiterpenos/farmacología , Estereoisomerismo
18.
Oncol Rep ; 47(2)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34913067

RESUMEN

Vasculogenic mimicry (VM) is the formation of a blood supply system that confers aggressive and metastatic properties to tumors and correlates with a poor prognosis in cancer patients. Thus, the inhibition of VM is considered an effective approach for cancer treatment, although such a mechanism remains poorly described. In the present study, we examined methionine aminopeptidase­2 (MetAP2), a key factor of angiogenesis, and demonstrated that it is pivotal for VM, using pharmacological and genetic approaches. Fumagillin and TNP­470, angiogenesis inhibitors that target MetAP2, significantly suppressed VM in various human cancer cell lines. We established MetAP2­knockout (KO) human fibrosarcoma HT1080 cells using the CRISPR/Cas9 system and found that VM was attenuated in these cells. Furthermore, re­expression of wild­type MetAP2 restored VM in the MetAP2­KO HT1080 cells, but the substitution of D251, a conserved amino acid in MetAP2, failed to rescue the VM. Collectively, our results demonstrate that MetAP2 is critical for VM in human cancer cells and suggest fumagillin and TNP­470 as potent VM­suppressing agents.


Asunto(s)
Aminopeptidasas/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Ciclohexanos/farmacología , Ácidos Grasos Insaturados/farmacología , Metaloendopeptidasas/efectos de los fármacos , Metionil Aminopeptidasas/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , O-(Cloroacetilcarbamoil) Fumagilol/farmacología , Aminopeptidasas/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Fibrosarcoma/tratamiento farmacológico , Técnicas de Silenciamiento del Gen , Humanos , Metaloendopeptidasas/genética , Metionil Aminopeptidasas/genética , Neovascularización Patológica/genética , Sesquiterpenos/farmacología
19.
Cancer Sci ; 113(3): 950-959, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34971015

RESUMEN

ErbB4 is a member of the ErbB receptor tyrosine kinase family. It has both pro- and anti-oncogenic activities in tumors. Vasculogenic mimicry (VM), a phenomenon in which cancer cells form capillary-like structures without endothelial cells, has been recognized to be a cause of malignant phenotypes in some solid tumors. Here, we used an in vitro VM formation assay, and demonstrated that ErbB4 negatively regulated VM formation in human breast cancer cells. By using CRISPR/Cas9-mediated gene knockout, we verified that the depletion of endogenous ErbB4 improved the VM formation capability. Although treatment with neuregulin 1 (NRG1), a ligand of ErbB4, induced the phosphorylation of ErbB4 and promoted VM formation in a dose-dependent manner, it did not induce such activities in kinase-dead K751M ErbB4-overexpressing cells. Moreover, we examined the effect of the missense mutation E872K of ErbB4, which has been reported in multiple tumors, on VM formation, and found that the mutation enhanced the basal phosphorylation level and ErbB4-mediated VM formation in the absence of NRG1 stimulation. Whereas NRG1 stimulated VM formation, excessive activation of ErbB4 induced a negative effect. In E872K ErbB4-overexpressing cells, but not in wild-type ErbB4-overexpressing cells, the number of VM tubes was significantly decreased by low-dose treatment with the ErbB inhibitor afatinib. Taken together, our findings demonstrated the significance of ErbB4-mediated VM formation, and suggested the possibility of ErbB4 mutations as effective targets in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neovascularización Patológica/metabolismo , Receptor ErbB-4/metabolismo , Afatinib/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Mutación , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neurregulina-1/genética , Neurregulina-1/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-4/genética
20.
Molecules ; 26(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34577156

RESUMEN

DPY19L3 has been identified as a C-mannosyltransferase for thrombospondin type-1 repeat domain-containing proteins. In this study, we focused on the role of DPY19L3 in the myogenic differentiation of C2C12 mouse myoblast cells. We carried out DPY19L3 gene depletion using the CRISPR/Cas9 system. The result showed that these DPY19L3-knockout cells could not be induced for differentiation. Moreover, the phosphorylation levels of MEK/ERK and p70S6K were suppressed in the DPY19L3-knockout cells compared with that of parent cells, suggesting that the protein(s) that is(are) DPY19L3-mediated C-mannosylated and regulate(s) MEK/ERK or p70S6K signaling is(are) required for the differentiation.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Manosiltransferasas/fisiología , Mioblastos/fisiología , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Glicosilación , Manosiltransferasas/genética , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mioblastos/citología , Fosforilación/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...