Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33712452

RESUMEN

Natural killer (NK) cells can kill infected or transformed cells via a lytic immune synapse. Diseased cells may exhibit altered mechanical properties but how this impacts NK cell responsiveness is unknown. We report that human NK cells were stimulated more effectively to secrete granzymes A and B, FasL (also known as FasLG), granulysin and IFNγ, by stiff (142 kPa) compared to soft (1 kPa) planar substrates. To create surrogate spherical targets of defined stiffness, sodium alginate was used to synthesise soft (9 kPa), medium (34 kPa) or stiff (254 kPa) cell-sized beads, coated with antibodies against activating receptor NKp30 (also known as NCR3) and the integrin LFA-1 (also known as ITGAL). Against stiff beads, NK cells showed increased degranulation. Polarisation of the microtubule-organising centre and lytic granules were impaired against soft targets, which instead resulted in the formation of unstable kinapses. Thus, by varying target stiffness to characterise the mechanosensitivity of immune synapses, we identify soft targets as a blind spot in NK cell recognition. This article has an associated First Person interview with the co-first authors of the paper.


Asunto(s)
Células Asesinas Naturales , Centro Organizador de los Microtúbulos , Línea Celular , Citotoxicidad Inmunológica , Humanos , Antígeno-1 Asociado a Función de Linfocito , Sinapsis
2.
PLoS One ; 14(6): e0218674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31242243

RESUMEN

An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or "priming," of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /ß and IL-1ß/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Línea Celular Tumoral , Citocinas/genética , Citocinas/inmunología , Citotoxicidad Inmunológica , Redes Reguladoras de Genes , Humanos , Inmunoterapia , Mediadores de Inflamación/metabolismo , Células K562 , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Células MCF-7 , Neoplasias/genética , Neoplasias/terapia , Fenotipo , Transcriptoma
3.
Genome Med ; 9(1): 54, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592290

RESUMEN

BACKGROUND: Profiles of DNA methylation of many tissues relevant in human disease have been obtained from microarrays and are publicly available. These can be used to generate maps of chromatin compartmentalization, demarcating open and closed chromatin across the genome. Additionally, large sets of genome-wide transcription factor binding profiles have been made available thanks to ChIP-seq technology. METHODS: We have identified genomic regions with altered chromatin compartmentalization in prostate adenocarcinoma tissue relative to normal prostate tissue, using DNA methylation microarray data from The Cancer Genome Atlas. DNA binding profiles from the Encyclopedia of DNA Elements (ENCODE) ChIP-seq studies have been systematically screened to find transcription factors with inferred DNA binding sites located in discordantly open/closed chromatin in malignant tissue (compared with non-cancer control tissue). We have combined this with tests for corresponding up-/downregulation of the transcription factors' putative target genes to obtain an integrated measure of cancer-specific regulatory activity to identify likely transcriptional drivers of prostate cancer. RESULTS: Generally, we find that the degree to which transcription factors preferentially bind regions of chromatin that become more accessible during prostate carcinogenesis is significantly associated to the level of systematic upregulation of their targets, at the level of gene expression. Our approach has yielded 11 transcription factors that show strong cancer-specific transcriptional activation of targets, including the novel candidates KAT2A and TRIM28, alongside established drivers of prostate cancer MYC, ETS1, GABP and YY1. CONCLUSIONS: This approach to integrated epigenetic and transcriptional profiling using publicly available data represents a cheap and powerful technique for identifying potential drivers of human disease. In our application to prostate adenocarcinoma data, the fact that well-known drivers are amongst the top candidates suggests that the discovery of novel candidate drivers may unlock pathways to future medicines. Data download instructions and code to reproduce this work are available at GitHub under 'edcurry/PRAD-compartments'.


Asunto(s)
Adenocarcinoma/genética , Carcinogénesis , Cromatina/metabolismo , Metilación de ADN , Neoplasias de la Próstata/genética , Factores de Transcripción , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Inmunoprecipitación de Cromatina , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...