Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Transl Med ; 22(1): 416, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698408

RESUMEN

One of the most challenging aspects of developing advanced cell therapy products (CTPs) is defining the mechanism of action (MOA), potency and efficacy of the product. This perspective examines these concepts and presents helpful ways to think about them through the lens of metrology. A logical framework for thinking about MOA, potency and efficacy is presented that is consistent with the existing regulatory guidelines, but also accommodates what has been learned from the 27 US FDA-approved CTPs. Available information regarding MOA, potency and efficacy for the 27 FDA-approved CTPs is reviewed to provide background and perspective. Potency process and efficacy process charts are introduced to clarify and illustrate the relationships between six key concepts: MOA, potency, potency test, efficacy, efficacy endpoint and efficacy endpoint test. Careful consideration of the meaning of these terms makes it easier to discuss the challenges of correlating potency test results with clinical outcomes and to understand how the relationships between the concepts can be misunderstood during development and clinical trials. Examples of how a product can be "potent but not efficacious" or "not potent but efficacious" are presented. Two example applications of the framework compare how MOA is assessed in cell cultures, animal models and human clinical trials and reveals the challenge of establishing MOA in humans. Lastly, important considerations for the development of potency tests for a CTP are discussed. These perspectives can help product developers set appropriate expectations for understanding a product's MOA and potency, avoid unrealistic assumptions and improve communication among team members during the development of CTPs.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Animales , Resultado del Tratamiento , United States Food and Drug Administration , Estados Unidos , Ensayos Clínicos como Asunto
2.
Front Physiol ; 14: 1119368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875017

RESUMEN

Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.

3.
J Biomed Mater Res A ; 111(8): 1279-1291, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36916776

RESUMEN

In the field of tissue engineering, 3D scaffolds and cells are often combined to yield constructs that are used as therapeutics to repair or restore tissue function in patients. Viable cells are often required to achieve the intended mechanism of action for the therapy, where the live cells may build new tissue or may release factors that induce tissue regeneration. Thus, there is a need to reliably measure cell viability in 3D scaffolds as a quality attribute of a tissue-engineered medical product. Here, we developed a noninvasive, label-free, 3D optical coherence tomography (OCT) method to rapidly (2.5 min) image large sample volumes (1 mm3 ) to assess cell viability and distribution within scaffolds. OCT imaging was assessed using a model scaffold-cell system consisting of a polysaccharide-based hydrogel seeded with human Jurkat cells. Four test systems were used: hydrogel seeded with live cells, hydrogel seeded with heat-shocked or fixed dead cells and hydrogel without any cells. Time series OCT images demonstrated changes in the time-dependent speckle patterns due to refractive index (RI) variations within live cells that were not observed for pure hydrogel samples or hydrogels with dead cells. The changes in speckle patterns were used to generate live-cell contrast by image subtraction. In this way, objects with large changes in RI were binned as live cells. Using this approach, on average, OCT imaging measurements counted 326 ± 52 live cells per 0.288 mm3 for hydrogels that were seeded with 288 live cells (as determined by the acridine orange-propidium iodide cell counting method prior to seeding cells in gels). Considering the substantial uncertainties in fabricating the scaffold-cell constructs, such as the error from pipetting and counting cells, a 13% difference in the live-cell count is reasonable. Additionally, the 3D distribution of live cells was mapped within a hydrogel scaffold to assess the uniformity of their distribution across the volume. Our results demonstrate a real-time, noninvasive method to rapidly assess the spatial distribution of live cells within a 3D scaffold that could be useful for assessing tissue-engineered medical products.


Asunto(s)
Ingeniería de Tejidos , Tomografía de Coherencia Óptica , Humanos , Ingeniería de Tejidos/métodos , Supervivencia Celular , Andamios del Tejido , Hidrogeles/farmacología
4.
J Biomed Mater Res A ; 111(1): 106-117, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194510

RESUMEN

The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by. In order to probe how scaffolds affect cell shape and behavior, cell-fiber contacts were imaged to assess their shape and dimensionality through a novel approach. Fluorescent polymeric fiber scaffolds were made so that they could be imaged by confocal fluorescence microscopy. Fluorescent polymer films were made as a planar control. hBSMCs were cultured on the fluorescent substrates and the cells and substrates were imaged. Two different image analysis approaches, one having geometrical assumptions and the other having statistical assumptions, were used to analyze the 3D structure of cell-scaffold contacts. The cells cultured in scaffolds contacted the fibers in multiple planes over the surface of the cell, while the cells cultured on films had contacts confined to the bottom surface of the cell. Shape metric analysis indicated that cell-fiber contacts had greater dimensionality and greater 3D character than the cell-film contacts. These results suggest that cell adhesion site-initiated signaling could emanate from multiple planes over the cell surface during culture in fibers, as opposed to emanating only from the cell's basal surface during culture on planar surfaces.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Andamios del Tejido/química , Diferenciación Celular , Matriz Extracelular/metabolismo , Células Cultivadas , Ingeniería de Tejidos/métodos , Células de la Médula Ósea
5.
PLoS One ; 17(1): e0262119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045103

RESUMEN

Cell viability, an essential measurement for cell therapy products, lacks traceability. One of the most common cell viability tests is trypan blue dye exclusion where blue-stained cells are counted via brightfield imaging. Typically, live and dead cells are classified based on their pixel intensities which may vary arbitrarily making it difficult to compare results. Herein, a traceable absorbance microscopy method to determine the intracellular uptake of trypan blue is demonstrated. The intensity pixels of the brightfield images are converted to absorbance images which are used to calculate moles of trypan blue per cell. Trypan blue cell viability measurements, where trypan blue content in each cell is quantified, enable traceable live-dead classifications. To implement the absorbance microscopy method, we developed an open-source AbsorbanceQ application that generates quantitative absorbance images. The validation of absorbance microscopy is demonstrated using neutral density filters. Results from four different microscopes demonstrate a mean absolute deviation of 3% from the expected optical density values. When assessing trypan blue-stained Jurkat cells, the difference in intracellular uptake of trypan blue in heat-shock-killed cells using two different microscopes is 3.8%. Cells killed with formaldehyde take up ~50% less trypan blue as compared to the heat-shock-killed cells, suggesting that the killing mechanism affects trypan blue uptake. In a test mixture of approximately 50% live and 50% dead cells, 53% of cells were identified as dead (±6% standard deviation). Finally, to mimic batches of low-viability cells that may be encountered during a cell manufacturing process, viability was assessed for cells that were 1) overgrown in the cell culture incubator for five days or 2) incubated in DPBS at room temperature for five days. Instead of making live-dead classifications using arbitrary intensity values, absorbance imaging yields traceable units of moles that can be compared, which is useful for assuring quality for biomanufacturing processes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Jurkat/citología , Azul de Tripano/química , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Formaldehído/efectos adversos , Humanos , Células Jurkat/química , Microscopía
6.
Artículo en Inglés | MEDLINE | ID: mdl-37051051

RESUMEN

Purpose of Review: Cell and tissue products do not just reflect their present conditions; they are the culmination of all they have encountered over time. Currently, routine cell culture practices subject cell and tissue products to highly variable and non-physiologic conditions. This article defines five cytocentric principles that place the conditions for cells at the core of what we do for better reproducibility in Regenerative Medicine. Recent Findings: There is a rising awareness of the cell environment as a neglected, but critical variable. Recent publications have called for controlling culture conditions for better, more reproducible cell products. Summary: Every industry has basic quality principles for reproducibility. Cytocentric principles focus on the fundamental needs of cells: protection from contamination, physiologic simulation, and full-time conditions for cultures that are optimal, individualized, and dynamic. Here, we outline the physiologic needs, the technologies, the education, and the regulatory support for the cytocentric principles in regenerative medicine.

8.
ACS Biomater Sci Eng ; 6(10): 5368-5376, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320558

RESUMEN

A metrological perspective for thinking about the characterization of tissue engineered medical products (TEMPs) may help improve communication between researchers. During the development lifecycle of a TEMP, many product properties are measured over the long path to a product release. The selection of each measurement is designed to establish that the product is safe and efficacious (i.e., successful). However, there is often miscommunication during discussions of product characterization. The miscommunication stems from inherent assumptions that are made about the measurements. A "measurand chart" can help clarify these assumptions to enable a more coherent discussion of the value of each measurement. A measurand is defined as "the quantity or property intended to be measured". Tissue engineering measurands are discussed in terms of three case studies including "cell viability in a scaffold", "potency", and "biocompatibility". Topics including a measurement model, defining tissue engineering measurands and definitional uncertainty, are discussed to further refine thinking about tissue engineering measurands. Awareness of these concepts while discussing product characterization can enhance communication and strategic thinking so that the resulting plan is clear and purposeful.


Asunto(s)
Ingeniería de Tejidos , Incertidumbre
9.
J Clin Invest ; 130(2): 1010-1023, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31714897

RESUMEN

Increases in the number of cell therapies in the preclinical and clinical phases have prompted the need for reliable and noninvasive assays to validate transplant function in clinical biomanufacturing. We developed a robust characterization methodology composed of quantitative bright-field absorbance microscopy (QBAM) and deep neural networks (DNNs) to noninvasively predict tissue function and cellular donor identity. The methodology was validated using clinical-grade induced pluripotent stem cell-derived retinal pigment epithelial cells (iPSC-RPE). QBAM images of iPSC-RPE were used to train DNNs that predicted iPSC-RPE monolayer transepithelial resistance, predicted polarized vascular endothelial growth factor (VEGF) secretion, and matched iPSC-RPE monolayers to the stem cell donors. DNN predictions were supplemented with traditional machine-learning algorithms that identified shape and texture features of single cells that were used to predict tissue function and iPSC donor identity. These results demonstrate noninvasive cell therapy characterization can be achieved with QBAM and machine learning.


Asunto(s)
Diferenciación Celular , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Células Madre Pluripotentes Inducidas , Microscopía , Epitelio Pigmentado de la Retina , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
10.
J Biomed Mater Res B Appl Biomater ; 108(5): 2063-2072, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31880376

RESUMEN

A critical component of many tissue-engineered medical products (TEMPs) is the scaffold or biomaterial. The industry's understanding of scaffold properties and their influence on cell behavior has advanced, but our technical capability to reliably characterize scaffolds requires improvement, especially to enable large-scale manufacturing. In response to the key findings from the 2013 ASTM International Workshop of Standards and Measurements for Tissue Engineering Scaffolds, the National Institute of Standards and Technology (NIST), ASTM International, BiofabUSA, and the Standards Coordinating Body (SCB) organized a workshop in 2018 titled, "Characterization of Fiber-Based Scaffolds". The goal was to convene a group of 40 key industry stakeholders to identify major roadblocks in measurements of fiber-based scaffold properties. This report provides an overview of the findings from this collaborative workshop. The four major consensus findings were that (a) there is need for a documentary standard guide that would aid developers in the selection of test methods for characterizing fiber-based scaffolds; (b) there is a need for a strategy to assess the quality of porosity and pore size measurements, which could potentially be ameliorated by the development of a reference material; (b) there are challenges with the lexicon used to describe and assess scaffolds; and (d) the vast array of product applications makes it challenging to identify consensus test methods. As a result of these findings, a working group was formed to develop an ASTM Standard Guide for Characterizing Fiber-Based Constructs that will provide developers guidance on selecting measurements for characterizing fiber-based scaffolds.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/normas , Andamios del Tejido/química , Andamios del Tejido/normas , Animales , Guías como Asunto , Humanos , Fenómenos Mecánicos , Nanofibras/química , Porosidad , Propiedades de Superficie , Ingeniería de Tejidos
11.
Biomaterials ; 186: 31-43, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30278344

RESUMEN

Ectopic bone formation in mice is the gold standard for evaluation of osteogenic constructs. By regular procedures, usually only 4 constructs can be accommodated per mouse, limiting screening power. Combinatorial cassettes (combi-cassettes) hold up to 19 small, uniform constructs from the time of surgery, through time in vivo, and subsequent evaluation. Two types of bone tissue engineering constructs were tested in the combi-cassettes: i) a cell-scaffold construct containing primary human bone marrow stromal cells with hydroxyapatite/tricalcium phosphate particles (hBMSCs + HA/TCP) and ii) a growth factor-scaffold construct containing bone morphogenetic protein 2 in a gelatin sponge (BMP2+GS). Measurements of bone formation by histology, bone formation by X-ray microcomputed tomography (µCT) and gene expression by quantitative polymerase chain reaction (qPCR) showed that constructs in combi-cassettes were similar to those created by regular procedures. Combi-cassettes afford placement of multiple replicates of multiple formulations into the same animal, which enables, for the first time, rigorous statistical assessment of: 1) the variability for a given formulation within an animal (intra-animal variability), 2) differences between different tissue-engineered formulations within the same animal and 3) the variability for a given formulation in different animals (inter-animal variability). Combi-cassettes enable a more high-throughput, systematic approach to in vivo studies of tissue engineering constructs.


Asunto(s)
Sustitutos de Huesos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Proteína Morfogenética Ósea 2/química , Sustitutos de Huesos/metabolismo , Fosfatos de Calcio/química , Células Cultivadas , Durapatita/química , Femenino , Gelatina/química , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Osteogénesis , Politetrafluoroetileno/química , Porosidad
12.
Biomed Mater ; 13(2): 025012, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29072579

RESUMEN

In living systems, it is frequently stated that form follows function by virtue of evolutionary pressures on organism development, but in the study of how functions emerge at the cellular level, function often follows form. We study this chicken versus egg problem of emergent structure-property relationships in living systems in the context of primary human bone marrow stromal cells cultured in a variety of microenvironments that have been shown to cause distinct patterns of cell function and differentiation. Through analysis of a publicly available catalog of three-dimensional (3D) cell shape data, we introduce a family of metrics to characterize the 'form' of the cell populations that emerge from a variety of diverse microenvironments. In particular, measures of form are considered that are expected to have direct significance for cell function, signaling and metabolic activity: dimensionality, polarizability and capacitance. Dimensionality was assessed by an intrinsic measure of cell shape obtained from the polarizability tensor. This tensor defines ellipsoids for arbitrary cell shapes and the thinnest dimension of these ellipsoids, P 1, defines a reference minimal scale for cells cultured in a 3D microenvironment. Polarizability governs the electric field generated by a cell, and determines the cell's ability to detect electric fields. Capacitance controls the shape dependence of the rate at which diffusing molecules contact the surface of the cell, and this has great significance for inter-cellular signaling. These results invite new approaches for designing scaffolds which explicitly direct cell dimensionality, polarizability and capacitance to guide the emergence of new cell functions derived from the acquired form.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Microambiente Celular , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Algoritmos , Animales , Núcleo Celular/metabolismo , Forma de la Célula , Electricidad , Fibrinógeno/química , Humanos , Ratones , Microscopía Confocal , Nanofibras/química , Poliestirenos/química , Probabilidad , Transducción de Señal , Trombina/química
13.
BMC Bioinformatics ; 18(1): 526, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183290

RESUMEN

BACKGROUND: Cell-scaffold contact measurements are derived from pairs of co-registered volumetric fluorescent confocal laser scanning microscopy (CLSM) images (z-stacks) of stained cells and three types of scaffolds (i.e., spun coat, large microfiber, and medium microfiber). Our analysis of the acquired terabyte-sized collection is motivated by the need to understand the nature of the shape dimensionality (1D vs 2D vs 3D) of cell-scaffold interactions relevant to tissue engineers that grow cells on biomaterial scaffolds. RESULTS: We designed five statistical and three geometrical contact models, and then down-selected them to one from each category using a validation approach based on physically orthogonal measurements to CLSM. The two selected models were applied to 414 z-stacks with three scaffold types and all contact results were visually verified. A planar geometrical model for the spun coat scaffold type was validated from atomic force microscopy images by computing surface roughness of 52.35 nm ±31.76 nm which was 2 to 8 times smaller than the CLSM resolution. A cylindrical model for fiber scaffolds was validated from multi-view 2D scanning electron microscopy (SEM) images. The fiber scaffold segmentation error was assessed by comparing fiber diameters from SEM and CLSM to be between 0.46% to 3.8% of the SEM reference values. For contact verification, we constructed a web-based visual verification system with 414 pairs of images with cells and their segmentation results, and with 4968 movies with animated cell, scaffold, and contact overlays. Based on visual verification by three experts, we report the accuracy of cell segmentation to be 96.4% with 94.3% precision, and the accuracy of cell-scaffold contact for a statistical model to be 62.6% with 76.7% precision and for a geometrical model to be 93.5% with 87.6% precision. CONCLUSIONS: The novelty of our approach lies in (1) representing cell-scaffold contact sites with statistical intensity and geometrical shape models, (2) designing a methodology for validating 3D geometrical contact models and (3) devising a mechanism for visual verification of hundreds of 3D measurements. The raw and processed data are publicly available from https://isg.nist.gov/deepzoomweb/data/ together with the web -based verification system.


Asunto(s)
Imagenología Tridimensional/métodos , Modelos Biológicos , Andamios del Tejido/química , Algoritmos , Materiales Biocompatibles/química , Células de la Médula Ósea/citología , Humanos , Internet , Masculino , Células Madre Mesenquimatosas/citología , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Rastreo , Interfaz Usuario-Computador , Microtomografía por Rayos X , Adulto Joven
14.
Rev Sci Instrum ; 88(10): 104301, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29092483

RESUMEN

A scaffold handling device (SHD) has been designed that can switch from gentle suction to positive pressure to lift and place nanofiber scaffolds. In tissue engineering laboratories, delicate fibrous scaffolds, such as electrospun nanofiber scaffolds, are often used as substrates for cell culture. Typical scaffold handling procedures include lifting the scaffolds, moving them from one container to another, sterilization, and loading scaffolds into cell culture plates. Using tweezers to handle the scaffolds can be slow, can damage the scaffolds, and can cause them to wrinkle or fold. Scaffolds may also acquire a static charge which makes them difficult to put down as they cling to tweezers. An SHD has been designed that enables more efficient, gentle lifting, and placement of delicate scaffolds. Most of the parts to make the SHD can be purchased, except for the tip which can be 3D-printed. The SHD enables more reliable handling of nanofiber scaffolds that may improve the consistency of biomanufacturing processes.

15.
J Biomed Mater Res B Appl Biomater ; 105(5): 989-1001, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-26888543

RESUMEN

Recent work demonstrates that osteoprogenitor cell culture on nanofiber scaffolds can promote differentiation. This response may be driven by changes in cell morphology caused by the three-dimensional (3D) structure of nanofibers. We hypothesized that nanofiber effects on cell behavior may be mediated by changes in organelle structure and function. To test this hypothesis, human bone marrow stromal cells (hBMSCs) were cultured on poly(ε-caprolactone) (PCL) nanofibers scaffolds and on PCL flat spuncoat films. After 1 day-culture, hBMSCs were stained for actin, nucleus, mitochondria, and peroxisomes, and then imaged using 3D confocal microscopy. Imaging revealed that the hBMSC cell body (actin) and peroxisomal volume were reduced during culture on nanofibers. In addition, the nucleus and peroxisomes occupied a larger fraction of cell volume during culture on nanofibers than on films, suggesting enhancement of the nuclear and peroxisomal functional capacity. Organelles adopted morphologies with greater 3D-character on nanofibers, where the Z-Depth (a measure of cell thickness) was increased. Comparisons of organelle positions indicated that the nucleus, mitochondria, and peroxisomes were closer to the cell center (actin) for nanofibers, suggesting that nanofiber culture induced active organelle positioning. The smaller cell volume and more centralized organelle positioning would reduce the energy cost of inter-organelle vesicular transport during culture on nanofibers. Finally, hBMSC bioassay measurements (DNA, peroxidase, bioreductive potential, lactate, and adenosine triphosphate (ATP)) indicated that peroxidase activity may be enhanced during nanofiber culture. These results demonstrate that culture of hBMSCs on nanofibers caused changes in organelle structure and positioning, which may affect organelle functional capacity and transport. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 2016. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 989-1001, 2017.


Asunto(s)
Células de la Médula Ósea , Núcleo Celular , Nanofibras , Peroxisomas , Poliésteres , Andamios del Tejido , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Femenino , Humanos , Nanofibras/administración & dosificación , Nanofibras/química , Peroxisomas/metabolismo , Peroxisomas/patología , Poliésteres/efectos adversos , Poliésteres/química , Células del Estroma/metabolismo , Células del Estroma/patología , Andamios del Tejido/efectos adversos , Andamios del Tejido/química
16.
ACS Biomater Sci Eng ; 3(10): 2302-2313, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33445289

RESUMEN

Many biomaterial scaffolds have been advanced to provide synthetic cell niches for tissue engineering and drug screening applications; however, current methods for comparing scaffold niches focus on cell functional outcomes or attempt to normalize materials properties between different scaffold formats. We demonstrate a three-dimensional (3D) cellular morphotyping strategy for comparing biomaterial scaffold cell niches between different biomaterial scaffold formats. Primary human bone marrow stromal cells (hBMSCs) were cultured on 8 different biomaterial scaffolds, including fibrous scaffolds, hydrogels, and porous sponges, in 10 treatment groups to compare a variety of biomaterial scaffolds and cell morphologies. A bioinformatics approach was used to determine the 3D cellular morphotype for each treatment group by using 82 shape metrics to analyze approximately 1000 cells. We found that hBMSCs cultured on planar substrates yielded planar cell morphotypes, while those cultured in 3D scaffolds had elongated or equiaxial cellular morphotypes with greater height. Multivariate analysis was effective at distinguishing mean shapes of cells in flat substrates from cells in scaffolds, as was the metric L1-depth (the cell height along its shortest axis after aligning cells with a characteristic ellipsoid). The 3D cellular morphotyping technique enables direct comparison of cellular microenvironments between widely different types of scaffolds and design of scaffolds based on cell structure-function relationships.

17.
PLoS One ; 11(12): e0167664, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907145

RESUMEN

An estimated $7.1 billion dollars a year is spent due to irreproducibility in pre-clinical data from errors in data analysis and reporting. Therefore, developing tools to improve measurement comparability is paramount. Recently, an open source tool, DiameterJ, has been deployed for the automated analysis of scanning electron micrographs of fibrous scaffolds designed for tissue engineering applications. DiameterJ performs hundreds to thousands of scaffold fiber diameter measurements from a single micrograph within a few seconds, along with a variety of other scaffold morphological features, which enables a more rigorous and thorough assessment of scaffold properties. Herein, an online, publicly available training module is introduced for educating DiameterJ users on how to effectively analyze scanning electron micrographs of fibers and the large volume of data that a DiameterJ analysis yields. The end goal of this training was to improve user data analysis and reporting to enhance reproducibility of analysis of nanofiber scaffolds. User performance was assessed before and after training to evaluate the effectiveness of the training modules. Users were asked to use DiameterJ to analyze reference micrographs of fibers that had known diameters. The results showed that training improved the accuracy and precision of measurements of fiber diameter in scanning electron micrographs. Training also improved the precision of measurements of pore area, porosity, intersection density, and characteristic fiber length between fiber intersections. These results demonstrate that the DiameterJ training module improves precision and accuracy in fiber morphology measurements, which will lead to enhanced data comparability.


Asunto(s)
Nanofibras/ultraestructura , Control de Calidad , Estadística como Asunto/métodos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Proliferación Celular , Humanos , Microscopía Electrónica de Rastreo/métodos , Nanofibras/química , Andamios del Tejido/química
18.
Stem Cells Transl Med ; 5(6): 705-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27386605

RESUMEN

UNLABELLED: The cell therapy industry has identified the inability to reliably characterize cells as possibly its greatest challenge and has called for standards and reference materials to provide assurance for measurements of cell properties. The challenges in characterization of cell therapy products can be largely addressed with systematic approaches for assessing sources of uncertainty and improving confidence in key measurements. This article presents the many strategies that can be used to ensure measurement confidence and discusses them in terms of how they can be applied to characterization of cell therapy products. SIGNIFICANCE: Application of these strategies to cell measurements will help to establish qualified assays for cell characterization, which may help streamline regulatory approval and enable more efficient development of cell therapy products.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Linfocitos T/citología , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Humanos , Células Madre Pluripotentes Inducidas/trasplante
19.
Biomaterials ; 104: 104-18, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27449947

RESUMEN

Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment.


Asunto(s)
Tamaño de la Célula , Microambiente Celular/fisiología , Aprendizaje Automático , Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Microscopía/métodos , Células Cultivadas , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Fenotipo
20.
J Ocul Pharmacol Ther ; 32(5): 272-85, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110730

RESUMEN

Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful.


Asunto(s)
Nanofibras/química , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...