Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 16587, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024164

RESUMEN

We devulcanized ground tire rubber (GTR) in a laboratory microwave oven and an internal mixer, measured the soluble content and the cross-link density of the samples, and then used Horikx's analysis. The results showed that microwave treatment caused severe degradation of the polymer chains, while in the case of thermomechanical devulcanization, the selective scission of covalent cross-links is more common. Four devulcanized ground tire rubber (dGTR) samples were chosen for further study and three groups of samples were produced: dGTR samples containing vulcanizing agents and different amounts of paraffin oil (dGTR-based mixtures), natural rubber-based rubber mixtures with different dGTR contents and reference rubber mixtures with dGTR-based mixtures (increased vulcanizing agent contents). Cure characteristics showed a plasticizer-like effect of dGTR. Tensile and tear strength decreased drastically with increasing dGTR content; however, elongation at break values did not follow such a trend. Mechanical properties improved with increased vulcanizing agent contents. The examined properties of the samples improved even further with the use of thermomechanically devulcanized samples. Horikx's analysis showed that this is attributable to moderate polymer chain scission.

2.
Polymers (Basel) ; 10(7)2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30960692

RESUMEN

Because of the chemically crosslinked 3D molecular structure of rubbers, their recycling is a challenging task, especially when cost efficiency is also considered. One of the most straightforward procedures is the grinding of discarded rubber products with subsequent devulcanization. The devulcanized rubber can be used as a feedstock for fresh rubber compounds or can be blended with uncured virgin rubber and thermoplastic polymers to form thermoplastic dynamic vulcanizates (TDVs). TDVs combine the beneficial (re)processability of thermoplastics and the elastic properties of rubbers. Our current work focuses on the development of polypropylene (PP)-based TDVs with the use of a tire model rubber (MR) composed of natural rubber (NR) and styrene-butadiene rubber (SBR) in a ratio of 70/30. The research target was the partial substitution of the above fresh MR by microwave devulcanized crumb rubber (dCR). TDVs were produced by continuous extrusion, and the effects of composition (PP/MR/dCR = 40/60/0…50/35/15) and processing parameters (different screw configurations, temperature profiles, the feeding method of PP) were investigated. Results showed that the fresh rubber compound can be replaced up to 10 wt % without compromising the mechanical properties of the resulting TDV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA