Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.086
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2401687121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133845

RESUMEN

The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain's language network.


Asunto(s)
Lenguaje , Neocórtex , Humanos , Neocórtex/metabolismo , Lóbulo Temporal/metabolismo , Masculino , Femenino , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neuronas/metabolismo , Lóbulo Frontal/metabolismo , Transcriptoma , Adulto
2.
Parasit Vectors ; 17(1): 332, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123265

RESUMEN

BACKGROUND: Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS: Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS: Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS: This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.


Asunto(s)
Erradicación de la Enfermedad , Tripanosomiasis Africana , República Democrática del Congo/epidemiología , Tripanosomiasis Africana/transmisión , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Animales , Humanos , Trypanosoma brucei gambiense , Teorema de Bayes , Moscas Tse-Tse/parasitología
3.
Nat Microbiol ; 9(8): 1929-1939, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095495

RESUMEN

Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.


Asunto(s)
Fabaceae , Fijación del Nitrógeno , Rhizobium , Simbiosis , Fabaceae/microbiología , Rhizobium/fisiología , Rhizobium/metabolismo , Interacciones Microbiota-Huesped , Nódulos de las Raíces de las Plantas/microbiología , Nodulación de la Raíz de la Planta
4.
Nat Commun ; 15(1): 6914, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134548

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.


Asunto(s)
Complejo IV de Transporte de Electrones , Inflamación , Hígado , Fosforilación Oxidativa , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Hígado/metabolismo , Hígado/patología , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Mitocondrias/metabolismo , Humanos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Ratones Endogámicos C57BL , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Femenino , Mutación , Proteína 58 DEAD Box , Proteínas de la Membrana , Ciclooxigenasa 1
5.
Am J Obstet Gynecol MFM ; : 101457, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098636

RESUMEN

BACKGROUND: Omphalocele is a congenital midline abdominal wall defect resulting in herniation of viscera into a membrane-covered sac. Pulmonary complications, including pulmonary hypoplasia, pulmonary hypertension, and prolonged respiratory support are a leading cause of neonatal morbidity and mortality. OBJECTIVE(S): This study aimed to assess the role of fetal MRI-derived lung volumes and omphalocele defect size as clinical tools to prognosticate postnatal pulmonary morbidity and neonatal mortality in those with a prenatally diagnosed omphalocele (PDO). STUDY DESIGN: This was a retrospective cohort study of all pregnancies with PDO at our fetal center from 2007-2023. Pregnancies with aneuploidy or concurrent life-limiting fetal anomalies were excluded. Using fetal MRI, observed-to-expected total fetal lung volume (O/E TLV) ratios were determined by a previously published method. The transverse diameter of the abdominal defect was also measured. The O/E TLV ratios and abdominal defect measurements were compared with postnatal outcomes. The primary outcome was death at any time. Secondary outcomes included death in the first 30 days of life or before discharge from birth hospitalization, the requirement of respiratory support with intubation and mechanical ventilation, or development of pulmonary hypertension. RESULTS: Of 101 pregnancies with a PDO, 54 pregnancies (53.5%) with prenatally diagnosed omphalocele met inclusion criteria. There was a significant increase in the rate of death when compared between the three O/E TLV classifications: 1/36 (2.8%) in the O/E ≥ 50% group, 3/14 (21.4%) in the O/E 25 - 49.9% group, and 4/4 (100%) in the O/E < 25% group (p < 0.001). The rate of intubation increased with the severity of O/E TLV classification, with 27.8% in the O/E ≥ 50% group, 64.3% in the O/E 25 - 49.9% group, and 100% in the O/E < 25% group (p = 0.003). The rate of pulmonary hypertension was also higher in the O/E 25 - 49.9% (50.0%) and the O/E < 25% (50.0%) groups compared to the O/E ≥ 50% group (8.3%, p = 0.002). There was no association between the transverse diameter of the abdominal wall defect and the primary outcome of death (OR = 1.08 95% CI = [0.65-1.78], p=0.77). CONCLUSIONS: In our cohort of patients with PDO, O/E TLV <50% is associated with death, need for intubation, prolonged intubation, and pulmonary hypertension. In contrast, omphalocele size demonstrated no prognostic value for these outcomes. The strong association between low fetal lung volume on MRI and poor neonatal outcomes highlights the utility of fetal MRI for estimating postnatal prognosis. Clinicians can utilize fetal lung volumes to direct perinatal counseling and optimize the plan of care.

6.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949537

RESUMEN

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Humanos , Adolescente , Femenino , Anciano , Adulto , Niño , Adulto Joven , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Anciano de 80 o más Años , Preescolar , Persona de Mediana Edad , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Neuroimagen/normas , Tamaño de la Muestra
7.
Mol Psychiatry ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009701

RESUMEN

Dyslexia is a learning difficulty with neurodevelopmental origins, manifesting as reduced accuracy and speed in reading and spelling. It is substantially heritable and frequently co-occurs with other neurodevelopmental conditions, particularly attention deficit-hyperactivity disorder (ADHD). Here, we investigate the genetic structure underlying dyslexia and a range of psychiatric traits using results from genome-wide association studies of dyslexia, ADHD, autism, anorexia nervosa, anxiety, bipolar disorder, major depressive disorder, obsessive compulsive disorder, schizophrenia, and Tourette syndrome. Genomic Structural Equation Modelling (GenomicSEM) showed heightened support for a model consisting of five correlated latent genomic factors described as: F1) compulsive disorders (including obsessive-compulsive disorder, anorexia nervosa, Tourette syndrome), F2) psychotic disorders (including bipolar disorder, schizophrenia), F3) internalising disorders (including anxiety disorder, major depressive disorder), F4) neurodevelopmental traits (including autism, ADHD), and F5) attention and learning difficulties (including ADHD, dyslexia). ADHD loaded more strongly on the attention and learning difficulties latent factor (F5) than on the neurodevelopmental traits latent factor (F4). The attention and learning difficulties latent factor (F5) was positively correlated with internalising disorders (.40), neurodevelopmental traits (.25) and psychotic disorders (.17) latent factors, and negatively correlated with the compulsive disorders (-.16) latent factor. These factor correlations are mirrored in genetic correlations observed between the attention and learning difficulties latent factor and other cognitive, psychological and wellbeing traits. We further investigated genetic variants underlying both dyslexia and ADHD, which implicated 49 loci (40 not previously found in GWAS of the individual traits) mapping to 174 genes (121 not found in GWAS of individual traits) as potential pleiotropic variants. Our study confirms the increased genetic relation between dyslexia and ADHD versus other psychiatric traits and uncovers novel pleiotropic variants affecting both traits. In future, analyses including additional co-occurring traits such as dyscalculia and dyspraxia will allow a clearer definition of the attention and learning difficulties latent factor, yielding further insights into factor structure and pleiotropic effects.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39045798

RESUMEN

When evaluating the effect of psychological treatments on a dichotomous outcome variable in a randomized controlled trial (RCT), covariate adjustment using logistic regression models is often applied. In the presence of covariates, average marginal effects (AMEs) are often preferred over odds ratios, as AMEs yield a clearer substantive and causal interpretation. However, standard error computation of AMEs neglects sampling-based uncertainty (i.e., covariate values are assumed to be fixed over repeated sampling), which leads to underestimation of AME standard errors in other generalized linear models (e.g., Poisson regression). In this paper, we present and compare approaches allowing for stochastic (i.e., randomly sampled) covariates in models for binary outcomes. In a simulation study, we investigated the quality of the AME and stochastic-covariate approaches focusing on statistical inference in finite samples. Our results indicate that the fixed-covariate approach provides reliable results only if there is no heterogeneity in interindividual treatment effects (i.e., presence of treatment-covariate interactions), while the stochastic-covariate approaches are preferable in all other simulated conditions. We provide an illustrative example from clinical psychology investigating the effect of a cognitive bias modification training on post-traumatic stress disorder while accounting for patients' anxiety using an RCT.

9.
Angew Chem Int Ed Engl ; 63(33): e202405057, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830180

RESUMEN

A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.

10.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830774

RESUMEN

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Asunto(s)
Materiales Biocompatibles , Estimulación Eléctrica , Grafito , Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Hidrogeles/química , Hidrogeles/farmacología , Grafito/química , Grafito/farmacología , Regeneración Nerviosa/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ensayo de Materiales , Ratas , Células PC12 , Ingeniería de Tejidos
11.
Nanoscale Adv ; 6(10): 2611-2622, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38752146

RESUMEN

An advanced design of the analytical ultracentrifuge with multiwavelength emission detection (MWE-AUC) is presented which offers outstanding performance concerning the spectral resolution and range flexibility as well as the quality of the data acquired. The excitation by a 520 nm laser is complemented with a 405 nm laser. An external spectrograph with three switchable tunable gratings permits optimisation of the spectral resolution in an order of magnitude range while keeping the spectral region broad. The new system design leads also to a significant reduction of systematic signal noise and allows the assessment and control of inner filter effects. Details regarding the very large signal dynamic range are presented, an important aspect when studying samples in a broad concentration range of up to five orders of magnitude. Our system is validated by complementary studies on two biological systems, fluorescent BSA and GFP, using the commercial Optima AUC with absorbance detection for comparison. Finally, we demonstrate the capabilities of our second generation MWE-AUC with respect to multiwavelength characterisation of gold nanoclusters, which exhibit specific fluorescence depending on their structure. Overall, this work depicts an important stepping stone for the concept of multiwavelength emission detection in AUC. The MWE-AUC developed, being to our knowledge the first and sole one of its kind, has reached the development level suitable for the future in-depth studies of size-, shape- and composition-dependent emission properties of colloids.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38702840

RESUMEN

BACKGROUND: COVID-19 caused widespread disruptions to health services worldwide, including reductions in elective surgery. Tooth extractions are among the most common reasons for elective surgery among children and young people (CYP). It is unclear how COVID-19 affected elective dental surgeries in hospitals over multiple pandemic waves at a national level. METHODS: Elective dental tooth extraction admissions were selected using Hospital Episode Statistics. Admission trends for the first 14 pandemic months were compared with the previous five years and results were stratified by age (under-11s, 11-16s, 17-24s). RESULTS: The most socioeconomically deprived CYP comprised the largest proportion of elective dental tooth extraction admissions. In April 2020, admissions dropped by >95%. In absolute terms, the biggest reduction was in April (11-16s: -1339 admissions, 95% CI -1411 to -1267; 17-24s: -1600, -1678 to -1521) and May 2020 (under-11s: -2857, -2962 to -2752). Admissions differed by socioeconomic deprivation for the under-11s (P < 0.0001), driven by fewer admissions than expected by the most deprived and more by the most affluent during the pandemic. CONCLUSION: Elective tooth extractions dropped most in April 2020, remaining below pre-pandemic levels throughout the study. Despite being the most likely to be admitted, the most deprived under-11s had the largest reductions in admissions relative to other groups.

13.
Nat Commun ; 15(1): 4361, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778053

RESUMEN

Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.


Asunto(s)
Oxígeno , Regeneración , Ingeniería de Tejidos , Humanos , Oxígeno/metabolismo , Ingeniería de Tejidos/métodos , Regeneración/fisiología , Animales , Materiales Biocompatibles/química
14.
Chem Soc Rev ; 53(12): 6345-6398, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38742651

RESUMEN

Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.


Asunto(s)
Colorantes Fluorescentes , Bibliotecas de Moléculas Pequeñas , Humanos , Colorantes Fluorescentes/química , Bibliotecas de Moléculas Pequeñas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo
15.
Chem Rev ; 124(11): 7106-7164, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38760012

RESUMEN

The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.


Asunto(s)
Biomarcadores , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Animales , Neoplasias/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Inflamación/diagnóstico , Encefalopatías/diagnóstico , Encefalopatías/diagnóstico por imagen
16.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38722625

RESUMEN

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Asunto(s)
Supervivencia Celular , Hidrogeles , Neuronas , Compuestos de Estaño , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Células PC12 , Ratas , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Hidrogeles/química , Andamios del Tejido/química , Neuronas/fisiología , Neuronas/citología , Oro/química , Oro/farmacología , Grafito/química , Grafito/farmacología , Platino (Metal)/química , Estimulación Eléctrica , Nanotubos/química , Proliferación Celular
17.
Clin Infect Dis ; 78(Supplement_2): S83-S92, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662692

RESUMEN

Over the past decade, considerable progress has been made in the control, elimination, and eradication of neglected tropical diseases (NTDs). Despite these advances, most NTD programs have recently experienced important setbacks; for example, NTD interventions were some of the most frequently and severely impacted by service disruptions due to the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modeling can help inform selection of interventions to meet the targets set out in the NTD road map 2021-2030, and such studies should prioritize questions that are relevant for decision-makers, especially those designing, implementing, and evaluating national and subnational programs. In September 2022, the World Health Organization hosted a stakeholder meeting to identify such priority modeling questions across a range of NTDs and to consider how modeling could inform local decision making. Here, we summarize the outputs of the meeting, highlight common themes in the questions being asked, and discuss how quantitative modeling can support programmatic decisions that may accelerate progress towards the 2030 targets.


Asunto(s)
COVID-19 , Enfermedades Desatendidas , Medicina Tropical , Enfermedades Desatendidas/prevención & control , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Modelos Teóricos , Organización Mundial de la Salud , SARS-CoV-2 , Toma de Decisiones , Salud Global
18.
Clin Infect Dis ; 78(Supplement_2): S117-S125, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662702

RESUMEN

BACKGROUND: Lymphatic filariasis (LF) is a debilitating, poverty-promoting, neglected tropical disease (NTD) targeted for worldwide elimination as a public health problem (EPHP) by 2030. Evaluating progress towards this target for national programmes is challenging, due to differences in disease transmission and interventions at the subnational level. Mathematical models can help address these challenges by capturing spatial heterogeneities and evaluating progress towards LF elimination and how different interventions could be leveraged to achieve elimination by 2030. METHODS: Here we used a novel approach to combine historical geo-spatial disease prevalence maps of LF in Ethiopia with 3 contemporary disease transmission models to project trends in infection under different intervention scenarios at subnational level. RESULTS: Our findings show that local context, particularly the coverage of interventions, is an important determinant for the success of control and elimination programmes. Furthermore, although current strategies seem sufficient to achieve LF elimination by 2030, some areas may benefit from the implementation of alternative strategies, such as using enhanced coverage or increased frequency, to accelerate progress towards the 2030 targets. CONCLUSIONS: The combination of geospatial disease prevalence maps of LF with transmission models and intervention histories enables the projection of trends in infection at the subnational level under different control scenarios in Ethiopia. This approach, which adapts transmission models to local settings, may be useful to inform the design of optimal interventions at the subnational level in other LF endemic regions.


Asunto(s)
Erradicación de la Enfermedad , Filariasis Linfática , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Filariasis Linfática/transmisión , Etiopía/epidemiología , Humanos , Prevalencia , Modelos Teóricos , Política de Salud
19.
Clin Infect Dis ; 78(Supplement_2): S108-S116, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662704

RESUMEN

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging. METHODS: We developed a computationally feasible framework for providing subnational projections for LF across 44 sub-Saharan African countries using ensemble models, guided by historical control data, to allow assessment of the role of subnational heterogeneities in global goal achievement. Projected scenarios include ongoing annual treatment from 2018 to 2030, enhanced coverage, and biannual treatment. RESULTS: Our projections suggest that progress is likely to continue well. However, highly endemic locations currently deploying strategies with the lower World Health Organization recommended coverage (65%) and frequency (annual) are expected to have slow decreases in prevalence. Increasing intervention frequency or coverage can accelerate progress by up to 5 or 6 years, respectively. CONCLUSIONS: While projections based on baseline data have limitations, our methodological advancements provide assessments of potential bottlenecks for the global goals for LF arising from subnational heterogeneities. In particular, areas with high baseline prevalence may face challenges in achieving the 2030 goals, extending the "tail" of interventions. Enhancing intervention frequency and/or coverage will accelerate progress. Our approach facilitates preimplementation assessments of the impact of local interventions and is applicable to other regions and neglected tropical diseases.


Asunto(s)
Filariasis Linfática , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Humanos , África del Sur del Sahara/epidemiología , Prevalencia , Erradicación de la Enfermedad/métodos , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/prevención & control , Filaricidas/uso terapéutico
20.
ACS Nano ; 18(18): 11655-11664, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652866

RESUMEN

Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA