Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 102(4): e03277, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33354775

RESUMEN

Top-down and bottom-up theories of trophic control have been fundamental to our understanding of community dynamics and structure. However, most ecological theories have focused on equilibrium dynamics and do not provide predictions for communities' responses in temporally fluctuating environments. By deriving the frequency response of populations in different trophic communities, we extend the top-down and bottom-up theories of ecology to include how temporal fluctuations in potential primary productivity percolate up the food chain and are re-expressed as population variability. Moreover, by switching from a time-based representation into the frequency domain, we provide a unified method to compare how the time scale of perturbations determines communities' responses. At low frequencies, primary producers and secondary consumers have the highest temporal variability, while the primary consumers are relatively stable. Similar to the Exploitation Ecosystem Hypothesis, top-down effects drive this alternating pattern of variability. We define the top-down effect of consumers on the variability of lower trophic levels as a variation cascade. However, at intermediate frequencies, variation cascades can amplify temporal variation up the food chain. At high frequencies, variation cascades weaken, and fluctuations are attenuated up the food chain. In summary, we provide a novel theory for how communities will respond to fluctuations in productivity, and we show that indirect species interactions play a crucial role in determining community dynamics across the frequency spectrum.


Asunto(s)
Ecosistema , Cadena Alimentaria
2.
Ecol Evol ; 6(17): 6301-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27648244

RESUMEN

Plants make foraging decisions that are dependent on ecological conditions, such as resource availability and distribution. Despite the field of plant behavioral ecology gaining momentum, ecologists still know little about what factors impact plant behavior, especially light-foraging behavior. We made use of the behavioral reaction norm approach to investigate light foraging in a plant species that exhibits rapid movement: Mimosa pudica. We explored how herbivore avoidance behavior in M. pudica (which closes its leaflets temporarily when disturbed) is affected by an individual's energy state and the quality of the current environment and also repeatedly tested the behavior of individuals from two seed sources to determine whether individuals exhibit a "personality" (i.e., behavioral syndrome). We found that when individuals are in a low-energy state, they adopt a riskier light-foraging strategy, opening leaflets faster, and not closing leaflets as often in response to a disturbance. However, when plants are in a high-energy state, they exhibit a plastic light-foraging strategy dependent on environment quality. Although we found no evidence that individuals exhibit behavioral syndromes, we found that individuals from different seed sources consistently behave differently from each other. Our results suggest that plants are capable of making state-dependent decisions and that plant decision making is complex, depending on the interplay between internal and external factors.

3.
Ecol Evol ; 4(3): 251-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24558581

RESUMEN

Omnivory is extremely common in animals, yet theory predicts that when given a choice of resources specialization should be favored over being generalist. The evolution of a feeding phenotype involves complex interactions with many factors other than resource choice alone, including environmental heterogeneity, resource quality, availability, and interactions with other organisms. We applied an evolutionary simulation model to examine how ecological conditions shape evolution of feeding phenotypes (e.g., omnivory), by varying the quality and availability (absolute and relative) of plant and animal (prey) resources. Resulting feeding phenotypes were defined by the relative contribution of plants and prey to diets of individuals. We characterized organisms using seven traits that were allowed to evolve freely in different simulated environments, and we asked which traits are important for different feeding phenotypes to evolve among interacting organisms. Carnivores, herbivores, and omnivores all coexisted without any requirement in the model for a synergistic effect of eating plant and animal prey. Omnivores were most prevalent when ratio of plants and animal prey was low, and to a lesser degree, when habitat productivity was high. A key result of the model is that omnivores evolved through many different combinations of trait values and environmental contexts. Specific combinations of traits tended to form emergent trait complexes, and under certain environmental conditions, are expressed as omnivorous feeding phenotypes. The results indicate that relative availabilities of plants and prey (over the quality of resources) determine an individual's feeding class and that feeding phenotypes are often the product of convergent evolution of emergent trait complexes under specific environmental conditions. Foraging outcomes appear to be consequences of degree and type of phenotypic specialization for plant and animal prey, navigation and exploitation of the habitat, reproduction, and interactions with other individuals in a heterogeneous environment. Omnivory should not be treated as a fixed strategy, but instead a pattern of phenotypic expression, emerging from diverse genetic sources and coevolving across a range of ecological contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...