Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 33: 106547, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294532

RESUMEN

Here, we provide the dataset associated with the research article "Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells" [1]. Based on several tools (SEM, EBSD, laser confocal microscopy and FE-SEM) we present original data relative to the microstructure and texture of aragonite crystallites in all Glycymeris shell layers (crossed-lamellar, complex crossed-lamellar, fibrous prismatic and pedal retractor and adductor myostraca) and address texture characteristics at the transition from one layer to the other, identifying similarities and differences among the different layers. Shells were cut transversely, obliquely and longitudinally in order to obtain different orientated sections of the outer and inner layer and of the myostraca. The identification of major microstructural elements was provided by detailed SEM and laser confocal microscopy images. Microstructure and texture characterization was based on EBSD measurements presented as band contrast images and as color-coded crystal orientation maps with corresponding pole figures. Crystal co-orientation was measured with the MUD value. Finally, the distribution of the organic matrix occluded within the outer crossed-lamellar layer was revealed using FE-SEM. These data, besides providing a modern unaltered Glycymeris reference to detect diagenetic alteration in fossil analogs used for paleoenvironmental reconstructions, are useful to better comprehend the mechanisms of bivalve shell formation.

2.
J Struct Biol ; 212(3): 107653, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148524

RESUMEN

The shells of the bivalves Glycymeris glycymeris and Glycymeris nummaria are widely used for environmental studies. They consist of aragonite and comprise four different microstructures and textures from outer to inner shell surfaces: crossed-lamellar, myostracal, complex crossed-lamellar and fibrous prismatic. We characterize with SEM, EBSD, laser-confocal microscopy and AFM imaging mineral unit size, morphology and orientation of crystallites in the different microstructural arrangements and at the transition from one microstructure to the other. We also characterize the microstructure and texture of adductor and pedal retractor myostraca and address structural characteristics at the transition from crossed-lamellar to myostracal assemblies. We find that the crossed-lamellar layer has a three-dimensional crystallographic orientational order. Each set of first-order lamellae consists of twinned aragonite; the two sets of first-order lamellae are misoriented to each other by about 30 to 40° while retaining an approximately parallel a-axis; they do not show any particular twin relationship. Myostracal aragonite grows homoepitactically onto the crossed-lamellar aragonite, but is clearly a separate microstructure, with its own crystallite size and morphology. Within adductor and pedal myostraca, prisms increase in size towards inner surfaces. In contrast to the other shell layers, the myostraca form through competitive growth. The complex crossed-lamellar aragonite initially inherits the three-dimensional texture of the crossed-lamellar microstructure, but with growth develops an axial texture, which is transmitted to the underlying fibrous prismatic microstructure. With this work we provide a modern, unaltered, reference for fossil Glycymeris shells to be used for detection of diagenetic overprint in fossil Glycymeris analogs.


Asunto(s)
Exoesqueleto/química , Bivalvos/química , Carbonato de Calcio/química , Animales , Cristalografía/métodos , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Minerales/química , Piel/química , Difracción de Rayos X/métodos
3.
Sci Rep ; 9(1): 598, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679565

RESUMEN

The fibrous calcite layer of modern brachiopod shells is a hybrid composite material and forms a substantial part of the hard tissue. We investigated how cells of the outer mantle epithelium (OME) secrete calcite material and generate the characteristic fibre morphology and composite microstructure of the shell. We employed AFM, FE-SEM, and TEM imaging of embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze substituted samples. Calcite fibres are secreted by outer mantle epithelium (OME) cells. Biometric analysis of TEM micrographs indicates that about 50% of these cells are attached via hemidesmosomes to an extracellular organic membrane present at the proximal, convex surface of the fibres. At these sites, mineral secretion is not active. Instead, ion transport from OME cells to developing fibres occurs at regions of closest contact between cells and fibres, however only at sites where the extracellular membrane at the proximal fibre surface is not developed yet. Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially and temporally changing process comprising of detachment of OME cells from the extracellular organic membrane, mineral secretion at detachment sites, termination of secretion with formation of the extracellular organic membrane, and attachment of cells via hemidesmosomes to this membrane.


Asunto(s)
Exoesqueleto/química , Carbonato de Calcio/química , Invertebrados/metabolismo , Exoesqueleto/ultraestructura , Animales , Carbonato de Calcio/metabolismo , Desmosomas/metabolismo , Epitelio/metabolismo , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
4.
Data Brief ; 19: 299-311, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29892650

RESUMEN

The present data in brief article provides additional data and information to our research article "Micro- and nanostructures reflect the degree of diagenetic alteration in modern and fossil brachiopod shell calcite: a multi-analytical screening approach (CL, FE-SEM, AFM, EBSD)" [1] (Casella et al.). We present fibre morphology, nano- and microstructure, as well as calcite crystal orientations and textures found in pristine, experimentally altered (hydrothermal and thermal), and diagenetically overprinted brachiopod shells. Combination of the screening tools AFM, FE-SEM, and EBSD allows to observe a significant change in microstructural and textural features with an increasing degree of laboratory-based and naturally occurring diagenetic alteration. Amalgamation of neighbouring fibres was observed on the micrometre scale level, whereas progressive decomposition of biopolymers in the shells and fusion of nanoparticulate calcite crystals was detected on the nanometre scale. The presented data in this article and the study described in [1] allows for qualitative information on the degree of diagenetic alteration of fossil archives used for palaeoclimate reconstruction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...