Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
PLoS One ; 19(4): e0297481, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626117

RESUMEN

BACKGROUND: Chronic neuropsychological sequelae following SARS-CoV-2 infection, including depression, anxiety, fatigue, and general cognitive difficulties, are a major public health concern. Given the potential impact of long-term neuropsychological impairment, it is important to characterize the frequency and predictors of this post-infection phenotype. METHODS: The Epidemiology, Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential (EPICC) study is a longitudinal study assessing the impact of SARS-CoV-2 infection in U.S. Military Healthcare System (MHS) beneficiaries, i.e. those eligible for care in the MHS including active duty servicemembers, dependents, and retirees. Four broad areas of neuropsychological symptoms were assessed cross-sectionally among subjects 1-6 months post-infection/enrollment, including: depression (Patient Health Questionnaire-9), anxiety (General Anxiety Disorder-7), fatigue (PROMIS® Fatigue 7a), and cognitive function (PROMIS® Cognitive Function 8a and PROMIS® Cognitive Function abilities 8a). Multivariable Poisson regression models compared participants with and without SARS-CoV-2 infection history on these measures, adjusting for sex, ethnicity, active-duty status, age, and months post-first positive or enrollment of questionnaire completion (MPFP/E); models for fatigue and cognitive function were also adjusted for depression and anxiety scores. RESULTS: The study population included 2383 participants who completed all five instruments within six MPFP/E, of whom 687 (28.8%) had at least one positive SARS-CoV-2 test. Compared to those who had never tested positive for SARS-CoV-2, the positive group was more likely to meet instrument-based criteria for depression (15.4% vs 10.3%, p<0.001), fatigue (20.1% vs 8.0%, p<0.001), impaired cognitive function (15.7% vs 8.6%, p<0.001), and impaired cognitive function abilities (24.3% vs 16.3%, p<0.001). In multivariable models, SARS-CoV-2 positive participants, assessed at an average of 2.7 months after infection, had increased risk of moderate to severe depression (RR: 1.44, 95% CI 1.12-1.84), fatigue (RR: 2.07, 95% CI 1.62-2.65), impaired cognitive function (RR: 1.64, 95% CI 1.27-2.11), and impaired cognitive function abilities (RR: 1.41, 95% CI 1.15-1.71); MPFP/E was not significant. CONCLUSIONS: Participants with a history of SARS-CoV-2 infection were up to twice as likely to report cognitive impairment and fatigue as the group without prior SARS-CoV-2 infection. These findings underscore the continued importance of preventing SARS-CoV-2 infection and while time since infection/enrollment was not significant through 6 months of follow-up, this highlights the need for additional research into the long-term impacts of COVID-19 to mitigate and reverse these neuropsychological outcomes.


Asunto(s)
Trastornos de Ansiedad , COVID-19 , Humanos , Autoinforme , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2 , Estudios de Seguimiento , Estudios Longitudinales , Fatiga/epidemiología , Fatiga/etiología
2.
mBio ; 15(1): e0279023, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38085102

RESUMEN

IMPORTANCE: The travelers' gut microbiome is potentially assaulted by acute and chronic perturbations (e.g., diarrhea, antibiotic use, and different environments). Prior studies of the impact of travel and travelers' diarrhea (TD) on the microbiome have not directly compared antibiotic regimens, and studies of different antibiotic regimens have not considered travelers' microbiomes. This gap is important to be addressed as the use of antibiotics to treat or prevent TD-even in moderate to severe cases or in regions with high infectious disease burden-is controversial based on the concerns for unintended consequences to the gut microbiome and antimicrobial resistance (AMR) emergence. Our study addresses this by evaluating the impact of defined antibiotic regimens (single-dose treatment or daily prophylaxis) on the gut microbiome and resistomes of deployed servicemembers, using samples collected during clinical trials. Our findings indicate that the antibiotic treatment regimens that were studied generally do not lead to adverse effects on the gut microbiome and resistome and identify the relative risks associated with prophylaxis. These results can be used to inform therapeutic guidelines for the prevention and treatment of TD and make progress toward using microbiome information in personalized medical care.


Asunto(s)
Diarrea , Microbioma Gastrointestinal , Humanos , Diarrea/prevención & control , Viaje , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana
3.
Open Forum Infect Dis ; 10(12): ofad579, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130596

RESUMEN

Background: The long-term effects of coronavirus disease 2019 (COVID-19) on physical fitness are unclear, and the impact of vaccination on that relationship is uncertain. Methods: We compared survey responses in a 1-year study of US military service members with (n = 1923) and without (n = 1591) a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We fit Poisson regression models to estimate the association between history of SARS-CoV-2 infection and fitness impairment, adjusting for time since infection, demographics, and baseline health. Results: The participants in this analysis were primarily young adults aged 18-39 years (75%), and 71.5% were male. Participants with a history of SARS-CoV-2 infection were more likely to report difficulty exercising (38.7% vs 18.4%; P < .01), difficulty performing daily activities (30.4% vs 12.7%; P < .01), and decreased fitness test (FT) scores (42.7% vs 26.2%; P < .01) than those without a history of infection. SARS-CoV-2-infected participants were at higher risk of these outcomes after adjusting for other factors (unvaccinated: exercising: adjusted risk ratio [aRR], 3.99; 95% CI, 3.36-4.73; activities: aRR, 5.02; 95% CI, 4.09-6.16; FT affected: aRR, 2.55; 95% CI, 2.19-2.98). Among SARS-CoV-2-positive participants, full vaccination before infection was associated with a lower risk of post-COVID-19 fitness impairment (fully vaccinated: exercise: aRR, 0.81; 95% CI, 0.70-0.95; activities: aRR, 0.76; 95% CI, 0.64-0.91; FT: aRR, 0.87; 95% CI, 0.76-1.00; boosted: exercise: aRR, 0.62; 95% CI, 0.51-0.74; activities: aRR, 0.52; 95% CI, 0.41-0.65; FT: aRR, 0.59; 95% CI, 0.49-0.70). Conclusions: In this study of generally young, healthy military service members, SARS-CoV-2 infection was associated with lower self-reported fitness and exercise capacity; vaccination and boosting were associated with lower risk of self-reported fitness loss.

4.
Front Microbiol ; 14: 1240176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766890

RESUMEN

Wound healing is a complex system including such key players as host, microbe, and treatments. However, little is known about their dynamic interactions. Here we explored the interplay between: (1) bacterial bioburden and host immune responses, (2) bacterial bioburden and wound size, and (3) treatments and wound size, using murine models and various treatment modalities: Phosphate buffer saline (PBS or vehicle, negative control), doxycycline, and two doses of A. baumannii phage mixtures. We uncovered that the interplay between bacterial bioburden and host immune system may be bidirectional, and that there is an interaction between host CD3+ T-cells and phage dosage, which significantly impacts bacterial bioburden. Furthermore, the bacterial bioburden and wound size association is significantly modulated by the host CD3+ T-cells. When the host CD3+ T-cells (x on log10 scale) are in the appropriate range (1.35 < x < = 1.5), we observed a strong association between colony forming units (CFU) and wound size, indicating a hallmark of wound healing. On the basis of the findings and our previous work, we proposed an integrated parallel systems biology model.

5.
Emerg Infect Dis ; 29(9): 1925-1928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579513

RESUMEN

The optimal approach to COVID-19 surveillance in congregate populations remains unclear. Our study at the US Naval Academy in Annapolis, Maryland, USA, assessed the concordance of antibody prevalence in longitudinally collected dried blood spots and saliva in a setting of frequent PCR-based testing. Our findings highlight the utility of salivary-based surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Saliva , Prueba de COVID-19 , Técnicas de Laboratorio Clínico
6.
PLoS One ; 18(2): e0281272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36757946

RESUMEN

BACKGROUND: Accurate COVID-19 prognosis is a critical aspect of acute and long-term clinical management. We identified discrete clusters of early stage-symptoms which may delineate groups with distinct disease severity phenotypes, including risk of developing long-term symptoms and associated inflammatory profiles. METHODS: 1,273 SARS-CoV-2 positive U.S. Military Health System beneficiaries with quantitative symptom scores (FLU-PRO Plus) were included in this analysis. We employed machine-learning approaches to identify symptom clusters and compared risk of hospitalization, long-term symptoms, as well as peak CRP and IL-6 concentrations. RESULTS: We identified three distinct clusters of participants based on their FLU-PRO Plus symptoms: cluster 1 ("Nasal cluster") is highly correlated with reporting runny/stuffy nose and sneezing, cluster 2 ("Sensory cluster") is highly correlated with loss of smell or taste, and cluster 3 ("Respiratory/Systemic cluster") is highly correlated with the respiratory (cough, trouble breathing, among others) and systemic (body aches, chills, among others) domain symptoms. Participants in the Respiratory/Systemic cluster were twice as likely as those in the Nasal cluster to have been hospitalized, and 1.5 times as likely to report that they had not returned-to-activities, which remained significant after controlling for confounding covariates (P < 0.01). Respiratory/Systemic and Sensory clusters were more likely to have symptoms at six-months post-symptom-onset (P = 0.03). We observed higher peak CRP and IL-6 in the Respiratory/Systemic cluster (P < 0.01). CONCLUSIONS: We identified early symptom profiles potentially associated with hospitalization, return-to-activities, long-term symptoms, and inflammatory profiles. These findings may assist in patient prognosis, including prediction of long COVID risk.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Interleucina-6 , Fenotipo , Hospitalización , Aprendizaje Automático
7.
Vector Borne Zoonotic Dis ; 23(1): 9-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633562

RESUMEN

Background: Bartonella species are fastidious gram-negative vector-borne bacteria with a wide range of mammalian reservoirs. While it is understood that some species of Bartonella are human pathogens, the extent of human exposure to Bartonella species (both pathogenic and nonpathogenic) is yet to be fully understood. Materials and Methods: To this end, residual sera from participants enrolled in undifferentiated fever studies in Cambodia, Ghana, Laos, and Peru were screened for the presence of IgG antibodies against Bartonella quintana and Bartonella henselae, using the FOCUS diagnostics Dual Spot- Bartonella IgG Immunofluorescence assay. Forty-eight patients with suspected or confirmed Bartonella bacilliformis exposure or infection in Peru were screened to assess cross-reactivity of the FOCUS assay for IgG against other Bartonella species. Results: Ten of 13 patients with confirmed B. bacilliformis infection were Bartonella-specific IgG positive, and overall, 36/48 of the samples were positive. In addition, 79/206, 44/200, 101/180, and 57/100 of the samples from Peru, Laos, Cambodia, and Ghana, respectively, were Bartonella-specific IgG positive. Furthermore, ectoparasite pools from Cambodia, Laos, and Peru were tested using quantitative real-time PCR (qPCR) for the presence of Bartonella DNA. Of the sand fly pools collected in Peru, 0/196 were qPCR positive; 15/140 flea pools collected in Cambodia were qPCR positive; while 0/105 ticks, 0/22 fleas, and 0/3 louse pools collected in Laos tested positive for Bartonella DNA. Conclusion: Evidence of Bartonella in fleas from Cambodia supports the possibility that humans are exposed to Bartonella through this traditional vector. However, Bartonella species were not found in fleas, ticks, or lice from Laos, or sand flies from Peru. This could account for the lower positive serology among the population in Laos and the strictly localized nature of B. bacilliformis infections in Peru. Human exposure to the Bartonella species and Bartonella as a human pathogen warrants further investigation.


Asunto(s)
Infecciones por Bartonella , Bartonella , Infestaciones por Pulgas , Siphonaptera , Garrapatas , Humanos , Animales , Bartonella/genética , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/veterinaria , Perú/epidemiología , Laos/epidemiología , Cambodia/epidemiología , Ghana , Infestaciones por Pulgas/microbiología , Infestaciones por Pulgas/veterinaria , Siphonaptera/microbiología , Garrapatas/microbiología , Mamíferos
8.
JAMA Netw Open ; 6(1): e2251360, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36652247

RESUMEN

Importance: Understanding the factors associated with post-COVID conditions is important for prevention. Objective: To identify characteristics associated with persistent post-COVID-19 symptoms and to describe post-COVID-19 medical encounters. Design, Setting, and Participants: This cohort study used data from the Epidemiology, Immunology, and Clinical Characteristics of Emerging Infectious Diseases With Pandemic Potential (EPICC) study implemented in the US military health system (MHS); MHS beneficiaries aged 18 years or older who tested positive for SARS-CoV-2 from February 28, 2020, through December 31, 2021, were analyzed, with 1-year follow-up. Exposures: SARS-CoV-2 infection. Main Outcomes and Measures: The outcomes analyzed included survey-reported symptoms through 6 months after SARS-CoV-2 infection and International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnosis categories reported in medical records 6 months following SARS-CoV-2 infection vs 3 months before infection. Results: More than half of the 1832 participants in these analyses were aged 18 to 44 years (1226 [66.9%]; mean [SD] age, 40.5 [13.7] years), were male (1118 [61.0%]), were unvaccinated at the time of their infection (1413 [77.1%]), and had no comorbidities (1290 [70.4%]). A total of 728 participants (39.7%) had illness that lasted 28 days or longer (28-89 days: 364 [19.9%]; ≥90 days: 364 [19.9%]). Participants who were unvaccinated prior to infection (risk ratio [RR], 1.39; 95% CI, 1.04-1.85), reported moderate (RR, 1.80; 95% CI, 1.47-2.22) or severe (RR, 2.25; 95% CI, 1.80-2.81) initial illnesses, had more hospitalized days (RR per each day of hospitalization, 1.02; 95% CI, 1.00-1.03), and had a Charlson Comorbidity Index score of 5 or greater (RR, 1.55; 95% CI, 1.01-2.37) were more likely to report 28 or more days of symptoms. Among unvaccinated participants, postinfection vaccination was associated with a 41% lower risk of reporting symptoms at 6 months (RR, 0.59; 95% CI, 0.40-0.89). Participants had higher risk of pulmonary (RR, 2.00; 95% CI, 1.40-2.84), diabetes (RR, 1.46; 95% CI, 1.00-2.13), neurological (RR, 1.29; 95% CI, 1.02-1.64), and mental health-related medical encounters (RR, 1.28; 95% CI, 1.01-1.62) at 6 months after symptom onset than at baseline (before SARS-CoV-2 infection). Conclusions and Relevance: In this cohort study, more severe acute illness, a higher Charlson Comorbidity Index score, and being unvaccinated were associated with a higher risk of reporting COVID-19 symptoms lasting 28 days or more. Participants with COVID-19 were more likely to seek medical care for diabetes, pulmonary, neurological, and mental health-related illness for at least 6 months after onset compared with their pre-COVID baseline health care use patterns. These findings may inform the risk-benefit ratio of COVID-19 vaccination policy.


Asunto(s)
COVID-19 , Humanos , Masculino , Adulto , Femenino , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Estudios de Cohortes , Síndrome Post Agudo de COVID-19
9.
J Nucl Med ; 64(5): 809-815, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522188

RESUMEN

Infectious disease remains the main cause of morbidity and mortality throughout the world. Of growing concern is the rising incidence of multidrug-resistant bacteria, derived from various selection pressures. Many of these bacterial infections are hospital-acquired and have prompted the Centers for Disease Control and Prevention in 2019 to reclassify several pathogens as urgent threats, its most perilous assignment. Consequently, there is an urgent need to improve the clinical management of bacterial infection via new methods to specifically identify bacteria and monitor antibiotic efficacy in vivo. In this work, we developed a novel radiopharmaceutical, 2-18F-fluoro-2-deoxy-mannitol (18F-fluoromannitol), which we found to specifically accumulate in both gram-positive and gram-negative bacteria but not in mammalian cells in vitro or in vivo. Methods: Clinical isolates of bacteria were serially obtained from wounds of combat service members for all in vitro and in vivo studies. Bacterial infection was quantified in vivo using PET/CT, and infected tissue was excised to confirm radioactivity counts ex vivo. We used these same tissues to confirm the presence of bacteria by extracting and correlating radioactive counts with colony-forming units of bacteria. Results: 18F-fluoromannitol was able to differentiate sterile inflammation from Staphylococcus aureus and Escherichia coli infections in vivo in a murine myositis model using PET imaging. Our study was extended to a laceration wound model infected with Acinetobacter baumannii, an important pathogen in the nosocomial and battlefield setting. 18F-fluoromannitol PET rapidly and specifically detected infections caused by A. baumannii and several other important pathogens (Enterococcus faecium, S. aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Importantly, 18F-fluoromannitol PET was able to monitor the therapeutic efficacy of vancomycin against S. aureus in vivo. Conclusion: The ease of production of 18F-fluoromannitol is anticipated to facilitate wide radiopharmaceutical dissemination. Furthermore, the broad sensitivity of 18F-fluoromannitol for bacterial infection in vivo suggests that it is an ideal imaging agent for clinical translation to detect and monitor infections and warrants further studies in the clinical setting.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Ratones , Animales , Antibacterianos/uso terapéutico , Bacterias Gramnegativas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Bacterias Grampositivas , Bacterias , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/tratamiento farmacológico , Tomografía de Emisión de Positrones , Mamíferos
10.
Clin Infect Dis ; 76(3): e439-e449, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608504

RESUMEN

BACKGROUND: Comparison of humoral responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinees, those with SARS-CoV-2 infection, or combinations of vaccine/ infection ("hybrid immunity") may clarify predictors of vaccine immunogenicity. METHODS: We studied 2660 US Military Health System beneficiaries with a history of SARS-CoV-2 infection-alone (n = 705), vaccination-alone (n = 932), vaccine-after-infection (n = 869), and vaccine-breakthrough-infection (n = 154). Peak anti-spike-immunoglobulin G (IgG) responses through 183 days were compared, with adjustment for vaccine product, demography, and comorbidities. We excluded those with evidence of clinical or subclinical SARS-CoV-2 reinfection from all groups. RESULTS: Multivariable regression results indicated that vaccine-after-infection anti-spike-IgG responses were higher than infection-alone (P < .01), regardless of prior infection severity. An increased time between infection and vaccination was associated with greater post-vaccination IgG response (P < .01). Vaccination-alone elicited a greater IgG response but more rapid waning of IgG (P < .01) compared with infection-alone (P < .01). BNT162b2 and mRNA-1273 vaccine-receipt was associated with greater IgG responses compared with JNJ-78436735 vaccine-receipt (P < .01), regardless of infection history. Those with vaccine-after-infection or vaccine-breakthrough-infection had a more durable anti-spike-IgG response compared to infection-alone (P < .01). CONCLUSIONS: Vaccine-receipt elicited higher anti-spike-IgG responses than infection-alone, although IgG levels waned faster in those vaccinated (compared to infection-alone). Vaccine-after-infection elicits a greater humoral response compared with vaccine or infection alone; and the timing, but not disease severity, of prior infection predicted these post-vaccination IgG responses. While differences between groups were small in magnitude, these results offer insights into vaccine immunogenicity variations that may help inform vaccination timing strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna nCoV-2019 mRNA-1273 , Ad26COVS1 , Anticuerpos Antivirales , Vacuna BNT162 , Infección Irruptiva , COVID-19/prevención & control , Inmunidad Humoral , Inmunoglobulina G , SARS-CoV-2 , Vacunación
11.
Sci Rep ; 12(1): 22471, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577783

RESUMEN

The associations between clinical phenotypes of coronavirus disease 2019 (COVID-19) and the host inflammatory response during the transition from peak illness to convalescence are not yet well understood. Blood plasma samples were collected from 129 adult SARS-CoV-2 positive inpatient and outpatient participants between April 2020 and January 2021, in a multi-center prospective cohort study at 8 military hospitals across the United States. Plasma inflammatory protein biomarkers were measured in samples from 15 to 28 days post symptom onset. Topological Data Analysis (TDA) was used to identify patterns of inflammation, and associations with peak severity (outpatient, hospitalized, ICU admission or death), Charlson Comorbidity Index (CCI), and body mass index (BMI) were evaluated using logistic regression. The study population (n = 129, 33.3% female, median 41.3 years of age) included 77 outpatient, 31 inpatient, 16 ICU-level, and 5 fatal cases. Three distinct inflammatory biomarker clusters were identified and were associated with significant differences in peak disease severity (p < 0.001), age (p < 0.001), BMI (p < 0.001), and CCI (p = 0.001). Host-biomarker profiles stratified a heterogeneous population of COVID-19 patients during the transition from peak illness to convalescence, and these distinct inflammatory patterns were associated with comorbid disease and severe illness due to COVID-19.


Asunto(s)
COVID-19 , Humanos , Femenino , Estados Unidos/epidemiología , Masculino , SARS-CoV-2 , Estudios Prospectivos , Convalecencia , Biomarcadores , Fenotipo , Índice de Severidad de la Enfermedad , Hospitalización
12.
Nat Commun ; 13(1): 7485, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470885

RESUMEN

International travel contributes to the global spread of antimicrobial resistance. Travelers' diarrhea exacerbates the risk of acquiring multidrug-resistant organisms and can lead to persistent gastrointestinal disturbance post-travel. However, little is known about the impact of diarrhea on travelers' gut microbiomes, and the dynamics of these changes throughout travel. Here, we assembled a cohort of 159 international students visiting the Andean city of Cusco, Peru and applied next-generation sequencing techniques to 718 longitudinally-collected stool samples. We find that gut microbiome composition changed significantly throughout travel, but taxonomic diversity remained stable. However, diarrhea disrupted this stability and resulted in an increased abundance of antimicrobial resistance genes that can remain high for weeks. We also identified taxa differentially abundant between diarrheal and non-diarrheal samples, which were used to develop a classification model that distinguishes between these disease states. Additionally, we sequenced the genomes of 212 diarrheagenic Escherichia coli isolates and found those from travelers who experienced diarrhea encoded more antimicrobial resistance genes than those who did not. In this work, we find the gut microbiomes of international travelers' are resilient to dysbiosis; however, they are also susceptible to colonization by multidrug-resistant bacteria, a risk that is more pronounced in travelers with diarrhea.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Humanos , Diarrea/microbiología , Microbioma Gastrointestinal/genética , Viaje , Infecciones por Escherichia coli/microbiología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
13.
PLoS One ; 17(11): e0276729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36342921

RESUMEN

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Automatización , Sensibilidad y Especificidad
14.
Cell Host Microbe ; 30(12): 1745-1758.e7, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36356586

RESUMEN

The rapid emergence of SARS-CoV-2 variants challenges vaccination strategies. Here, we collected 201 serum samples from persons with a single infection or multiple vaccine exposures, or both. We measured their neutralization titers against 15 natural variants and 7 variants with engineered spike mutations and analyzed antigenic diversity. Antigenic maps of primary infection sera showed that Omicron sublineages BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and more similar to Beta/Gamma/Mu variants. Three mRNA COVID-19 vaccinations increased neutralization of BA.1 more than BA.4/BA.5 or BA.2.12.1. BA.1 post-vaccination infection elicited higher neutralization titers to all variants than three vaccinations alone, although with less neutralization to BA.2.12.1 and BA.4/BA.5. Those with BA.1 infection after two or three vaccinations had similar neutralization titer magnitude and antigenic recognition. Accounting for antigenic differences among variants when interpreting neutralization titers can aid the understanding of complex patterns in humoral immunity that informs the selection of future COVID-19 vaccine strains.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
15.
Open Forum Infect Dis ; 9(7): ofac275, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35873301

RESUMEN

Background: Patient-reported outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are an important measure of the full burden of coronavirus disease (COVID). Here, we examine how (1) infecting genotype and COVID-19 vaccination correlate with inFLUenza Patient-Reported Outcome (FLU-PRO) Plus score, including by symptom domains, and (2) FLU-PRO Plus scores predict return to usual activities and health. Methods: The epidemiology, immunology, and clinical characteristics of pandemic infectious diseases (EPICC) study was implemented to describe the short- and long-term consequences of SARS-CoV-2 infection in a longitudinal, observational cohort. Multivariable linear regression models were run with FLU-PRO Plus scores as the outcome variable, and multivariable Cox proportional hazards models evaluated effects of FLU-PRO Plus scores on return to usual health or activities. Results: Among the 764 participants included in this analysis, 63% were 18-44 years old, 40% were female, and 51% were White. Being fully vaccinated was associated with lower total scores (ß = -0.39; 95% CI, -0.57 to -0.21). The Delta variant was associated with higher total scores (ß = 0.25; 95% CI, 0.05 to 0.45). Participants with higher FLU-PRO Plus scores were less likely to report returning to usual health and activities (health: hazard ratio [HR], 0.46; 95% CI, 0.37 to 0.57; activities: HR, 0.56; 95% CI, 0.47 to 0.67). Fully vaccinated participants were more likely to report returning to usual activities (HR, 1.24; 95% CI, 1.04 to 1.48). Conclusions: Full SARS-CoV-2 vaccination is associated with decreased severity of patient-reported symptoms across multiple domains, which in turn is likely to be associated with earlier return to usual activities. In addition, infection with the Delta variant was associated with higher FLU-PRO Plus scores than previous variants, even after controlling for vaccination status.

16.
Open Forum Infect Dis ; 9(7): ofac314, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899278

RESUMEN

Background: There is limited information on the functional consequences of coronavirus disease 2019 (COVID-19) vaccine side effects. To support patient counseling and public health messaging, we describe the risk and correlates of COVID-19 vaccine side effects sufficient to prevent work or usual activities and/or lead to medical care ("severe" side effects). Methods: The EPICC study is a longitudinal cohort study of Military Healthcare System beneficiaries including active duty service members, dependents, and retirees. We studied 2789 adults who were vaccinated between December 2020 and December 2021. Results: Severe side effects were most common with the Ad26.COV2.S (Janssen/Johnson and Johnson) vaccine, followed by mRNA-1273 (Moderna) then BNT162b2 (Pfizer/BioNTech). Severe side effects were more common after the second than first dose (11% vs 4%; P < .001). First (but not second) dose side effects were more common in those with vs without prior severe acute respiratory syndrome coronavirus 2 infection (9% vs 2%; adjusted odds ratio [aOR], 5.84; 95% CI, 3.8-9.1), particularly if the prior illness was severe or critical (13% vs 2%; aOR, 10.57; 95% CI, 5.5-20.1) or resulted in inpatient care (17% vs 2%; aOR, 19.3; 95% CI, 5.1-72.5). Side effects were more common in women than men but not otherwise related to demographic factors. Conclusions: Vaccine side effects sufficient to prevent usual activities were more common after the second than first dose and varied by vaccine type. First dose side effects were more likely in those with a history of COVID-19-particularly if that prior illness was severe or associated with inpatient care. These findings may assist clinicians and patients by providing a real-world evaluation of the likelihood of experiencing impactful postvaccine symptoms.

17.
Mil Med ; 187(Suppl 2): 42-51, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35512375

RESUMEN

INTRODUCTION: During the wars in Iraq and Afghanistan, increased incidence of multidrug-resistant (MDR) organisms, as well as polymicrobial wounds and infections, complicated the management of combat trauma-related infections. Multidrug resistance and wound microbiology are a research focus of the Trauma Infectious Disease Outcomes Study (TIDOS), an Infectious Disease Clinical Research Program, Uniformed Services University, research protocol. To conduct comprehensive microbiological research with the goal of improving the understanding of the complicated etiology of wound infections, the TIDOS MDR and Virulent Organisms Trauma Infections Initiative (MDR/VO Initiative) was established as a collaborative effort with the Brooke Army Medical Center, Naval Medical Research Center, U.S. Army Institute of Surgical Research, and Walter Reed Army Institute of Research. We provide a review of the TIDOS MDR/VO Initiative and summarize published findings. METHODS: Antagonism and biofilm formation of commonly isolated wound bacteria (e.g., ESKAPE pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), antimicrobial susceptibility patterns, and clinical outcomes are being examined. Isolates collected from admission surveillance swabs, as part of infection control policy, and clinical infection workups were retained in the TIDOS Microbiological Repository and associated clinical data in the TIDOS database. RESULTS: Over the TIDOS study period (June 2009 to December 2014), more than 8,300 colonizing and infecting isolates were collected from military personnel injured with nearly one-third of isolates classified as MDR. At admission to participating U.S. military hospitals, 12% of wounded warriors were colonized with MDR Gram-negative bacilli. Furthermore, 27% of 913 combat casualties with ≥1 infection during their trauma hospitalization had MDR Gram-negative bacterial infections. Among 335 confirmed combat-related extremity wound infections (2009-2012), 61% were polymicrobial and comprised various combinations of Gram-negative and Gram-positive bacteria, yeast, fungi, and anaerobes. Escherichia coli was the most common Gram-negative bacilli isolated from clinical workups, as well as the most common colonizing MDR secondary to extended-spectrum ß-lactamase resistance. Assessment of 479 E. coli isolates collected from wounded warriors found 188 pulsed-field types (PFTs) from colonizing isolates and 54 PFTs from infecting isolates without significant overlap across combat theaters, military hospitals, and study years. A minority of patients with colonizing E. coli isolates developed subsequent infections with the same E. coli strain. Enterococcus spp. were most commonly isolated from polymicrobial wound infections (53% of 204 polymicrobial cultures). Patients with Enterococcus infections were severely injured with a high proportion of lower extremity amputations and genitourinary injuries. Approximately 65% of polymicrobial Enterococcus infections had other ESKAPE organisms isolated. As biofilms have been suggested as a cause of delayed wound healing, wound infections with persistent recovery of bacteria (isolates of same organism collected ≥14 days apart) and nonrecurrent bacterial isolates were assessed. Biofilm production was significantly associated with recurrent bacteria isolation (97% vs. 59% with nonrecurrent isolates; P < 0.001); however, further analysis is needed to confirm biofilm formation as a predictor of persistent wound infections. CONCLUSIONS: The TIDOS MDR/VO Initiative provides comprehensive and detailed data of major microbial threats associated with combat-related wound infections to further the understanding of wound etiology and potentially identify infectious disease countermeasures, which may lead to improvements in combat casualty care.


Asunto(s)
Infecciones Bacterianas , Enfermedades Transmisibles , Infección de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Enterococcus , Escherichia coli , Bacterias Gramnegativas , Hospitales Militares , Humanos , Pruebas de Sensibilidad Microbiana , Estados Unidos/epidemiología , Infección de Heridas/tratamiento farmacológico
18.
Sci Transl Med ; 14(645): eabn8543, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35380448

RESUMEN

The rapid spread of the highly contagious Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along with its high number of mutations in the spike gene has raised alarms about the effectiveness of current medical countermeasures. To address this concern, we measured the neutralization of the Omicron BA.1 variant pseudovirus by postvaccination serum samples after two and three immunizations with the Pfizer/BioNTech162b2 SARS-CoV-2 mRNA (Pfizer/BNT162b2) vaccine, convalescent serum samples from unvaccinated individuals infected by different variants, and clinical-stage therapeutic antibodies. We found that titers against the Omicron variant were low or undetectable after two immunizations and in many convalescent serum samples, regardless of the infecting variant. A booster vaccination increased titers more than 30-fold against Omicron to values comparable to those seen against the D614G variant after two immunizations. Neither age nor sex was associated with the differences in postvaccination antibody responses. We also evaluated 18 clinical-stage therapeutic antibody products and an antibody mimetic protein product obtained directly from the manufacturers. Five monoclonal antibodies, the antibody mimetic protein, three antibody cocktails, and two polyclonal antibody preparations retained measurable neutralization activity against Omicron with a varying degree of potency. Of these, only three retained potencies comparable to the D614G variant. Two therapeutic antibody cocktails in the tested panel that are authorized for emergency use in the United States did not neutralize Omicron. These findings underscore the potential benefit of mRNA vaccine boosters for protection against Omicron and the need for rapid development of antibody therapeutics that maintain potency against emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Inmunización Pasiva , Vacunación , Vacunas Sintéticas , Vacunas de ARNm , Sueroterapia para COVID-19
19.
Open Forum Infect Dis ; 9(3): ofab623, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35141345

RESUMEN

BACKGROUND: Nasopharyngeal (NP) swabs are the standard for SARS-CoV-2 diagnosis. If less invasive alternatives to NP swabs (eg, oropharyngeal [OP] or nasal swabs [NS]) are comparably sensitive, the use of these techniques may be preferable in terms of comfort, convenience, and safety. METHODS: This study compared the detection of SARS-CoV-2 in swab samples collected on the same day among participants with at least one positive PCR test. RESULTS: Overall, 755 participants had at least one set of paired swabs. Concordance between NP and other swab types was 75% (NS), 72% (OP), 54% (rectal swabs [RS]), and 78% (NS/OP combined). Kappa values were moderate for the NS, OP, and NS/OP comparisons (0.50, 0.45, and 0.54, respectively). Highest sensitivity relative to NP (0.87) was observed with a combination of NS/OP tests (positive if either NS or OP was positive). Sensitivity of the non-NP swab types was highest in the first week postsymptom onset and decreased thereafter. Similarly, virus RNA quantity was highest in the NP swabs as compared with NS, OP, and RS within two weeks postsymptom onset. OP and NS performance decreased as virus RNA quantity decreased. No differences were noted between NS specimens collected at home or in clinic. CONCLUSIONS: NP swabs detected more SARS-CoV-2 cases than non-NP swabs, and the sensitivity of the non-NP swabs decreased with time postsymptom onset. While other swabs may be simpler to collect, NP swabs present the best chance of detecting SARS-CoV-2 RNA, which is essential for clinical care as well as genomic surveillance.

20.
Clin Infect Dis ; 74(5): 897-900, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34117878

RESUMEN

Little is known about severe acute respiratory syndrome coronavirus 2 "vaccine-breakthrough" infections (VBIs). Here we characterize 24 VBIs in predominantly young healthy persons. While none required hospitalization, a proportion endorsed severe symptoms and shed live virus as high as 4.13 × 103 plaque-forming units/mL. Infecting genotypes included both variant-of-concern (VOC) and non-VOC strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Variación Genética , Humanos , Fenotipo , ARN Mensajero , SARS-CoV-2/genética , Vacunas Sintéticas , Esparcimiento de Virus , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...