Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(25): 10161-10169, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864607

RESUMEN

Fourier transform-fluorescence recovery after photobleaching (FT-FRAP) using a diffractive optical element (DOE) is shown to support distance-dependent diffusion analysis in biologically relevant media. Integration of DOEs enables patterning of a dot array for parallel acquisition of point-bleach FRAP measurements at multiple locations across the field of view. In homogeneous media, the spatial harmonics of the dot array analyzed in the spatial Fourier transform domain yield diffusion recovery curves evaluated over specific well-defined distances. Relative distances for diffusive recovery in the spatial Fourier transform domain are directly connected to the 2D (h,k) Miller indices of the corresponding lattice lines. The distribution of the photobleach power across the entire field of view using a multidot array pattern greatly increases the overall signal power in the spatial FT-domain for signal-to-noise improvements. Derivations are presented for the mathematical underpinnings of FT-FRAP performed with 2D periodicity in the photobleach patterns. Retrofitting of FT-FRAP into instrumentation for high-throughput FRAP analysis (Formulatrix) supports automated analysis of robotically prepared 96-well plates for precise quantification of molecular mobility. Figures of merit are evaluated for FT-FRAP in analysis for both slow diffusion of fluorescent dyes in glassy polymer matrices spanning several days and model proteins and monoclonal antibodies within aqueous solutions recovering in matters of seconds.

2.
J Chem Phys ; 160(5)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38341693

RESUMEN

Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O-H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O-H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O-H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O-H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model ß-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.

3.
Anal Chem ; 95(38): 14331-14340, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37699550

RESUMEN

Multiphoton-excited fluorescence recovery while photobleaching (FRWP) is demonstrated as a method for quantitative measurements of rapid molecular diffusion over microsecond to millisecond timescales. Diffusion measurements are crucial in assessing molecular mobility in cell biology, materials science, and pharmacology. Optical and fluorescence microscopy techniques enable non-invasive rapid analysis of molecular diffusion but can be challenging for systems with diffusion coefficients exceeding ∼100 µm2/s. As an example, fluorescence recovery after photobleaching (FRAP) operates on the implicit assumption of a comparatively fast photobleaching step prior to a relatively slow recovery and is not generally applicable for systems exhibiting substantial recovery during photobleaching. These challenges are exacerbated in multiphoton excitation by the lower excitation efficiency and competing effects from local heating. Herein, beam-scanning FRWP with patterned line-bleach illumination is introduced as a technique that addresses FRAP limitations and further extends its application range by measuring faster diffusion events. In FRWP, the recovery of fluorescence is continuously probed after each pass of a fast-scanning mirror, and the upper bound of measurable diffusion rates is, therefore, only limited by the mirror scanning frequency. A theoretical model describing transient fluctuations in fluorescence intensity arising as a result of combined contributions from photobleaching and localized photothermal effect is introduced along with a mathematical framework for quantifying fluorescence intensity temporal curves and recovering room-temperature diffusion coefficients. FRWP is then tested by characterization of normal diffusion of rhodamine-labeled bovine serum albumin, green fluorescence protein, and immunoglobulin G molecules in aqueous solutions of varying viscosity.

4.
J Phys Chem B ; 127(38): 8216-8225, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37722139

RESUMEN

Analytical theory is proposed predicting remarkably large and fully electric-dipole-allowed circular dichroism (CD) in electronic ultraviolet-visible (UV-vis) absorbance spectroscopy of uniaxial surface assemblies. Partial depolarization of the transmitted beam provides a pathway for surface-specific and chiral-specific dissymmetry parameters that are orders of magnitude greater than those from analogous measurements of isotropic systems. Predictions of the model generated using ab initio quantum chemical calculations with no adjustable parameters agreed with UV-vis absorbance CD measurements of naproxen microcrystals prepared on hydrophilic substrates. Notably, these calculations correctly predicted (i) the key spectroscopic features, (ii) the relative magnitudes of chiral-specific peaks in the CD spectrum, (iii) the absolute CD sign, and (iv) the reciprocal CD sign inversion arising from sample reorientation in the instrument. These results connect the molecular structure and orientation to large CD observable in oriented thin-film assemblies, with the potential for further extension to broad classes of chiral-specific spectral analyses.

5.
Anal Chim Acta ; 1261: 341129, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37147049

RESUMEN

Generative adversarial linear discriminant analysis (GALDA) is formulated as a broadly applicable tool for increasing classification accuracy and reducing overfitting in spectrochemical analysis. Although inspired by the successes of generative adversarial neural networks (GANs) for minimizing overfitting artifacts in artificial neural networks, GALDA was built around an independent linear algebra framework distinct from those in GANs. In contrast to feature extraction and data reduction approaches for minimizing overfitting, GALDA performs data augmentation by identifying and adversarially excluding the regions in spectral space in which genuine data do not reside. Relative to non-adversarial analogs, loading plots for dimension reduction showed significant smoothing and more prominent features aligned with spectral peaks following generative adversarial optimization. Classification accuracy was evaluated for GALDA together with other commonly available supervised and unsupervised methods for dimension reduction in simulated spectra generated using an open-source Raman database (Romanian Database of Raman Spectroscopy, RDRS). Spectral analysis was then performed for microscopy measurements of microsphereroids of the blood thinner clopidogrel bisulfate and in THz Raman imaging of common constituents in aspirin tablets. From these collective results, the potential scope of use for GALDA is critically evaluated relative to alternative established spectral dimension reduction and classification methods.


Asunto(s)
Artefactos , Microscopía , Análisis Discriminante , Clopidogrel , Bases de Datos Factuales
6.
Anal Chem ; 95(4): 2192-2202, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656303

RESUMEN

The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic "comb-bleach" patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules.

7.
Mol Pharm ; 20(1): 593-605, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346665

RESUMEN

Atomic layer coating (ALC) is emerging as a particle engineering strategy to inhibit surface crystallization of amorphous solid dispersions (ASDs). In this study, we turn our attention to evaluating drug release behavior from ALC-coated ASDs, and begin to develop a mechanistic framework. Posaconazole/hydroxypropyl methylcellulose acetate succinate was used as a model system at both 25% and 50% drug loadings. ALC-coatings of aluminum oxide up to 40 nm were evaluated for water sorption kinetics and dissolution performance under a range of pH conditions. Scanning electron microscopy with energy dispersive X-ray analysis was used to investigate the microstructure of partially released ASD particles. Coating thickness and defect density (inferred from deposition rates) were found to impact water sorption kinetics. Despite reduced water sorption kinetics, the presence of a coating was not found to impact dissolution rates under conditions where rapid drug release was observed. Under slower releasing conditions, underlying matrix crystallization was reduced by the coating, enabling greater levels of drug release. These results demonstrate that water was able to penetrate through the ALC coating, hydrating the amorphous solid, which can initiate dissolution of drug and/or polymer (depending on pH conditions). Swelling of the ASD substrate subsequently occurs, disrupting and cracking the coating, which serves to facilitate rapid drug release. Water sorption kinetics are highlighted as a potential predictive tool to investigate the coating quality and its potential impact on dissolution performance. This study has implications for formulation design and evaluation of ALC-coated ASD particles.


Asunto(s)
Polímeros , Agua , Liberación de Fármacos , Solubilidad , Cristalización , Polímeros/química , Agua/química , Composición de Medicamentos/métodos
8.
Anal Chem ; 94(38): 13100-13107, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36099561

RESUMEN

Autofluorescence-detected photothermal mid-infrared (AF-PTIR) microscopy was shown to enable parts-per-million detection of α-indomethacin impurity in γ-indomethacin samples. Subtle differences in the photothermal response of the UV-autofluorescence of two indomethacin crystal polymorphs were used for sub-micron chemical discrimination based on fingerprint region mid-IR spectroscopy. The AF-PTIR assignment was independently confirmed by second harmonic generation (SHG) microscopy, which was shown to reduce the total analysis time by rapidly identifying the suitable fields of view. AF-PTIR microscopy has the potential to assist in the early identification of crystal form impurities in the solid dosage forms development pipeline.


Asunto(s)
Indometacina , Cristalización/métodos , Indometacina/química , Microscopía de Fuerza Atómica/métodos
9.
Anal Chem ; 94(17): 6512-6520, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35446548

RESUMEN

Label-free autofluorescence-detected photothermal mid-IR (AF-PTIR) microscopy is demonstrated experimentally and applied to test the distribution of active pharmaceutical ingredients (APIs) in a mixture containing representative pharmaceutical excipients. Two-photon excited UV-fluorescence (TPE-UVF) supports autofluorescence of native aromatic moieties using visible-light optics. Thermal modulation of the fluorescence quantum yield serves to report on infrared absorption, enabling infrared spectroscopy in the fingerprint region with a spatial resolution dictated by fluorescence. AF-PTIR provides high selectivity and sensitivity in image contrast for aromatic APIs, complementing broadly applicable optical photothermal IR (O-PTIR) microscopy based on photothermal modulation of refractive index/scattering. Mapping the API distribution is critical in designing processes for powdered dosage form manufacturing, with high spatial variance potentially producing variability in both delivered dosage and product efficacy. The ubiquity of aromatic moieties within API candidates suggests the viability of AF-PTIR in combination with O-PTIR to improve the confidence of chemical classification in spatially heterogeneous dosage forms.


Asunto(s)
Excipientes , Microscopía , Polvos , Espectrofotometría Infrarroja/métodos
10.
ACS Biomater Sci Eng ; 8(5): 1860-1866, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35377599

RESUMEN

The use of biomaterials for the inclusion and stabilization of biopolymers is an ongoing challenge. Herein, we disclose three-dimensional (3D) coiled-coil peptide crystals with metal ions that include and overgrow His-tagged fluorescent proteins within the crystal. The protein guests are found within two symmetry-related growth sectors of the crystalline host that are associated with faces of the growing crystal that display ligands for metal ions. The fluorescent proteins are included within this "hourglass" region of the crystals at a notably high level, display order within the crystal hosts, and demonstrate sufficiently tight packing to enable energy transfer between a donor-acceptor pair. His-tagged fluorescent proteins display remarkable thermal stability to denaturation over extended periods of time (days) at high temperatures when within the crystals. Ultimately, this strategy may prove useful for the prolonged storage of thermally sensitive biopolymer guests within a 3D crystalline matrix.


Asunto(s)
Péptidos , Proteínas , Secuencia de Aminoácidos , Péptidos/química
11.
J Am Chem Soc ; 143(29): 10809-10815, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270255

RESUMEN

We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy and then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Intrinsic ultraviolet autofluorescence of tryptophan and protein microparticles enabled label-free F-PTIR microscopy. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir/polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water sorption in spin-cast films.


Asunto(s)
Fluorescencia , Polietilenglicoles/química , Povidona/química , Ritonavir/química , Dióxido de Silicio/química , Compuestos de Vinilo/química , Geles/química , Cinética , Microscopía Fluorescente , Espectrofotometría Infrarroja , Temperatura
12.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 463-470, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33825707

RESUMEN

The depth of field (DoF) was extended 2.8-fold to achieve rapid crystal screening by retrofitting a custom-designed micro-retarder array (µRA) in the optical beam path of a nonlinear optical microscope. The merits of the proposed strategy for DoF enhancement were assessed in applications of second-harmonic generation imaging of protein crystals. It was found that DoF extension increased the number of crystals detected while simultaneously reducing the number of `z-slices' required for screening. Experimental measurements of the wavelength-dependence of the extended DoF were in excellent agreement with theoretical predictions. These results provide a simple and broadly applicable approach to increase the throughput of existing nonlinear optical imaging methods for protein crystal screening.


Asunto(s)
Imagen Óptica/métodos , Proteínas/química
13.
Mol Pharm ; 17(12): 4564-4571, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33151697

RESUMEN

Seeded growth rates of ritonavir in copovidone at 75% relative humidity (RH) and 50 °C were evaluated by single-particle tracking second harmonic generation (SHG) microscopy and found to be ∼3-fold slower for crystallites at the surface compared to the bulk. The shelf lives of final dosage forms containing amorphous solid dispersions (ASDs) are often dictated by the rates of active pharmaceutical ingredient crystallization. Upon exposure to elevated RH, the higher anticipated water content near the surfaces of ASDs has the potential to substantially impact nucleation and growth kinetics relative to the bulk. However, quantitative assessment of these differences in growth rates is complicated by challenges associated with discrimination of the two contributions (supersaturation and molecular mobility) in ensemble-averaged measurements. In the present study, "sandwich" materials were prepared, in which sparse populations of ritonavir single-crystalline seeds were pressed between two similar ASD films to assess bulk crystallization rates. These sandwich materials were compared and contrasted with analogously prepared "open-faced" samples, without the capping film, to assess the surface crystallization rates. Single-particle analysis by SHG microscopy time-series during in situ crystallization produced average growth rates of 3.8 µm/h for bulk columnar crystals with a particle-to-particle standard deviation of 0.9 µm/h. In addition, columnar crystal growth rates for surface particles were measured to be 1.3 µm/h and radiating crystal growth rates for surface particles were measured to be 1.0 µm/h, both with a particle-to-particle deviation of 0.4 µm/h. The observed appearance of radiating crystals upon surface seeding is attributed to reduced ritonavir solubility upon water adsorption at the interface, leading to higher defect densities in crystal growth. Despite substantial differences in crystal habit, correction of the surface growth rates by a factor of 4 from geometric effects resulted in relatively minor but statistically significant differences in the growth kinetics for the two local environments. These results are consistent, with viscosity being a relatively weak function of water absorption coupled with primarily diffusion-limited growth kinetics.


Asunto(s)
Excipientes/química , Ritonavir/química , Disponibilidad Biológica , Química Farmacéutica , Cristalización , Liberación de Fármacos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Ritonavir/farmacocinética , Solubilidad
14.
J Phys Chem A ; 124(43): 9105-9112, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-32975942

RESUMEN

Multiagent consensus equilibrium (MACE) is demonstrated for the integration of experimental observables as constraints in molecular structure determination and for the systematic merging of multiple computational architectures. MACE is founded on simultaneously determining the equilibrium point between multiple experimental and/or computational agents; the returned state description (e.g., atomic coordinates for molecular structure) represents the intersection of each manifold and is not equivalent to the average optimum state for each agent. The moment of inertia, determined directly from microwave spectroscopy measurements, serves to illustrate the mechanism through which MACE evaluations merge experimental and quantum chemical modeling. MACE results reported combine gradient descent optimization of each ab initio agent with an agent that predicts the chemical structure based on root-mean-square deviation of the predicted inertia tensor with experimentally measured moments of inertia. Successful model fusion for several small molecules was achieved as well as the larger molecule solketal. Fusing a model of moment of inertia, an underdetermined predictor of structure, with low cost computational methods yielded structure determination performance comparable to standard computational methods such as MP2/cc-pVTZ and greater agreement with experimental observables.

15.
Biophys J ; 119(4): 737-748, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32771078

RESUMEN

Fourier transform fluorescence recovery after photobleaching (FT-FRAP) with patterned illumination is theorized and demonstrated for quantitatively evaluating normal and anomalous diffusion. Diffusion characterization is routinely performed to assess mobility in cell biology, pharmacology, and food science. Conventional FRAP is noninvasive, has low sample volume requirements, and can rapidly measure diffusion over distances of a few micrometers. However, conventional point-bleach measurements are complicated by signal-to-noise limitations, the need for precise knowledge of the photobleach beam profile, potential for bias due to sample heterogeneity, and poor compatibility with multiphoton excitation because of local heating. In FT-FRAP with patterned illumination, the time-dependent fluorescence recovery signal is concentrated to puncta in the spatial Fourier domain, with substantial improvements in signal-to-noise, mathematical simplicity, representative sampling, and multiphoton compatibility. A custom nonlinear optical beam-scanning microscope enabled patterned illumination for photobleaching through two-photon excitation. Measurements in the spatial Fourier domain removed dependence on the photobleach profile, suppressing bias from imprecise knowledge of the point spread function. For normal diffusion, the fluorescence recovery produced a simple single-exponential decay in the spatial Fourier domain, in excellent agreement with theoretical predictions. Simultaneous measurement of diffusion at multiple length scales was enabled through analysis of multiple spatial harmonics of the photobleaching pattern. Anomalous diffusion was characterized by FT-FRAP through a nonlinear fit to multiple spatial harmonics of the fluorescence recovery. Constraining the fit to describe diffusion over multiple length scales resulted in higher confidence in the recovered fitting parameters. Additionally, phase analysis in FT-FRAP was shown to inform on flow/sample translation.


Asunto(s)
Iluminación , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Análisis de Fourier , Fotoblanqueo
16.
Anal Chem ; 92(1): 1171-1178, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31790194

RESUMEN

Stochastic phase transformations within individual crystalline particles were recorded by integration of second harmonic generation (SHG) imaging with differential scanning calorimetry (DSC). The SHG activity of a crystal is highly sensitive to the specific molecular packing arrangement within a noncentrosymmetric lattice, providing access to information otherwise unavailable by conventional imaging approaches. Consequently, lattice transformations associated with dehydration/desolvation events were readily observed by SHG imaging and directly correlated to the phase transformations detected by the DSC measurements. Following studies of a model system (urea), stochastic differential scanning calorimetry (SDSC) was performed on trehalose dihydrate, which has a more complex phase behavior. From these measurements, SDSC revealed a broad diversity of single-particle thermal trajectories and direct evidence of a "cold phase transformation" process not observable by the DSC measurements alone.

17.
Mol Pharm ; 17(3): 769-776, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31769985

RESUMEN

Single-particle tracking of crystal growth performed in situ enables substantial improvements in the signal-to-noise ratio (SNR) for recovered crystal nucleation and growth rates by nonlinear optical microscopy. Second harmonic generation (SHG) is exquisitely sensitive to noncentrosymmetric crystals, including those produced by many homochiral active pharmaceutical ingredients (APIs). Accelerated stability testing at elevated temperatures and relative humidity informs design of pharmaceutical formulations. In the present work, we demonstrate reduction in the Poisson noise associated with the finite number of particles present in a given field of view through continuous monitoring during stability testing. Single-particle tracking enables recovery of crystal growth rates of individual crystallites and enables unambiguous direct detection of nucleation events. Collectively, these capabilities provide significant improvements in the signal-to-noise for nucleation and crystal growth measurements, corresponding to approximately an order of magnitude reduction in anticipated measurement time for recovery of kinetics parameters.


Asunto(s)
Composición de Medicamentos/métodos , Diseño de Fármacos , Hexosas/química , Pirrolidinas/química , Ritonavir/química , Dióxido de Silicio/química , Compuestos de Vinilo/química , Coloides , Cristalización , Estabilidad de Medicamentos , Humedad , Cinética , Microscopía de Generación del Segundo Armónico/métodos , Relación Señal-Ruido , Solubilidad , Temperatura , Agua/química
18.
Pharm Res ; 36(12): 174, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31667638

RESUMEN

PURPOSE: The overall goal of this study was to investigate the dissolution performance and crystallization kinetics of amorphous solid dispersions (ASDs) of a weakly basic compound, posaconazole, dispersed in a pH-sensitive polymeric matrix consisting of hydroxypropyl methylcellulose acetate succinate (HPMC-AS), using fasted-state simulated media. METHODS: ASDs with three different drug loadings, 10, 25 and 50 wt.%, and the commercially available tablets were exposed to acidic media (pH 1.6), followed by transfer to, and dissolution in, intestinal media (pH 6.5). Parallel single stage dissolution experiments in only simulated intestinal media were also performed to better understand the impact of the gastric stage. Different analytical methods, including nanoparticle tracking analysis, powder x-ray diffraction, second harmonic generation and two-photon excitation ultraviolet fluorescence microscopy, were used to characterize the phase behavior of these systems at different stages of dissolution. RESULTS: Results revealed that all ASDs exhibited some degree of drug release upon suspension in acidic media, and were also vulnerable to matrix crystallization. Upon transfer to intestinal media conditions, supersaturation was observed. This was short-lived for some dispersions due to the release of the crystals formed in the acid immersion stage which acted as seeds for crystal growth. Lower drug loading ASDs also exhibited transient formation of amorphous nanodroplets prior to crystallization. CONCLUSIONS: This work emphasizes the significance of assessing the impact of pH change on dissolution and provides a fundamental basis of understanding the phase behavior kinetics of ASDs of weakly basic drugs when formulated with pH sensitive polymers.


Asunto(s)
Portadores de Fármacos/química , Metilcelulosa/análogos & derivados , Triazoles/química , Cristalización , Composición de Medicamentos/métodos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Cinética , Metilcelulosa/química , Nanopartículas/química , Tamaño de la Partícula , Transición de Fase , Solubilidad , Temperatura
19.
J Phys Chem B ; 123(30): 6643-6650, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290672

RESUMEN

A mathematical framework to treat partial polarization in second harmonic generation imaging of nonlinear optical susceptibility is described and applied to imaging tissue sections 5, 40, and 70 µm thick, sufficient to introduce significant depolarization of the incident field. Polarization analysis becomes complicated in turbid media, in which scattering can result in degradation of polarization purity. The simplest framework for describing the polarization of purely polarized light is the Jones framework, which has been applied to great effect in the polarization analysis of second harmonic generation. However, the Jones framework lacks the necessary generality to describe a partially polarized electric field, (i.e., ones positioned within the volume of the Poincaré sphere rather than on the surface). Recent work connecting the Jones framework to the Mueller-Stokes framework has enabled interpretation of results with the more intuitive Jones framework while maintaining generality of the Mueller-Stokes method. The magnitude and nature of linear interactions of the tissue with the incident infrared field are discussed. Despite substantial depolarization, the nonlinear optical susceptibility tensor elements of collagen was recoverable at each pixel images of thick tissue utilizing the described framework. For thick and thin tissues, values of the tensor element ratio ρ were recovered in good agreement with previous studies. Both hyperpolarizing and depolarizing effects of SHG were observed, and the mechanism of hyperpolarization was determined to rest upon the interplay of orientation and relative contribution of polarized and depolarized incident light to elicit SHG.


Asunto(s)
Microscopía de Polarización/métodos , Cola (estructura animal) , Animales , Ratones , Modelos Teóricos , Nefelometría y Turbidimetría , Dinámicas no Lineales
20.
Anal Chem ; 91(8): 5286-5294, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30856314

RESUMEN

A digital filter based on non-negative matrix factorization (NMF) enables blind deconvolution of temporal information from large data sets, simultaneously recovering both photon arrival times and the instrument impulse response function (IRF). In general, the measured digital signals produced by modern analytical instrumentation are convolved by the corresponding IRFs, which can complicate quantitative analyses. Common examples include photon counting (PC), chromatography, super resolution imaging, fluorescence imaging, and mass spectrometry. Scintillation counting, in particular, provides a signal-to-noise advantage in measurements of low intensity signals, but has a limited dynamic range due to pulse overlap. This limitation can complicate the interpretation of data by masking temporal and amplitude information on the underlying detected signal. Typical methods for deconvolution of the photon events require advanced knowledge of the IRF, which is not generally trivial to obtain. In this work, a sliding window approach was developed to perform NMF one pixel at a time on short segments of large (e.g., 25 million point) data sets. Using random initial guesses for the IRF, the NMF filter simultaneously recovered both the deconvolved photon arrival times and the IRF. Applying the NMF filter to the analysis of triboluminescence (TL) data traces of active pharmaceutical ingredients enabled discrimination between different hypothesized physical origins of the signal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...