Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
2.
J Proteome Res ; 22(10): 3159-3177, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37634194

RESUMEN

Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Antivirales/farmacología , Inhibidores mTOR , Fosfatidilinositol 3-Quinasas , SARS-CoV-2 , Replicación Viral , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Serina-Treonina Quinasas TOR
3.
iScience ; 26(6): 106780, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193127

RESUMEN

Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.

4.
Heliyon ; 9(3): e13795, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36915486

RESUMEN

The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.

5.
MRS Commun ; 12(6): 1160-1167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311275

RESUMEN

The near real-time detection of airborne particles-of-interest is needed for avoiding current/future threats. The incorporation of imprinted particles into a micelle-based electrochemical cell produced a signal when brought into contact with particle analytes (such as SARS-COV-2), previously imprinted onto the structure. Nanoamp scales of signals were generated from what may've been individual virus-micelle interactions. The system showed selectivity when tested against similar size and morphology particles. The technology was compatible with airborne aerosol sampling techniques. Overall, the application of imprinted micelle technology could provide near real-time detection methods to a host of possible analytes of interest in the field. Supplementary Information: The online version contains supplementary material available at 10.1557/s43579-022-00242-0.

6.
Pathogens ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832652

RESUMEN

As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.

7.
mBio ; 12(4): e0157221, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372702

RESUMEN

Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe atypical pneumonia in infected individuals, but the underlying mechanisms of pathogenesis remain unknown. While much has been learned from the few reported autopsy cases, an in-depth understanding of the cells targeted by MERS-CoV in the human lung and their relative contribution to disease outcomes is needed. The host response in MERS-CoV-infected primary human lung microvascular endothelial (MVE) cells and fibroblasts (FB) was evaluated over time by analyzing total RNA, proteins, and lipids to determine the cellular pathways modulated postinfection. Findings revealed that MERS-CoV-infected MVE cells die via apoptotic mechanisms downstream of the unfolded protein response (UPR). Interruption of enzymatic processes within the UPR in MERS-CoV-infected male mice reduced disease symptoms, virus-induced lung injury, and time to recovery. These data suggest that the UPR plays an important role in MERS-CoV infection and may represent a host target for therapeutic intervention.


Asunto(s)
Lesión Pulmonar Aguda/patología , Apoptosis/fisiología , Infecciones por Coronavirus/patología , Respuesta de Proteína Desplegada/fisiología , Lesión Pulmonar Aguda/virología , Animales , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/virología , Femenino , Fibroblastos/metabolismo , Fibroblastos/virología , Humanos , Masculino , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología
8.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051754

RESUMEN

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Asunto(s)
Algoritmos , Modelos Biológicos , Genómica , Proteínas
9.
Proc Natl Acad Sci U S A ; 117(43): 26915-26925, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046644

RESUMEN

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.


Asunto(s)
Alphacoronavirus/fisiología , Infecciones por Coronavirus/virología , Susceptibilidad a Enfermedades/virología , Replicación Viral , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Alphacoronavirus/genética , Alphacoronavirus/crecimiento & desarrollo , Animales , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/transmisión , Expresión Génica , Especificidad del Huésped , Humanos , Proteínas Luminiscentes/genética , Ratones , Células Vero , Replicación Viral/efectos de los fármacos
10.
Sci Transl Med ; 12(541)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32253226

RESUMEN

Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog ß-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (ß-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.


Asunto(s)
Antivirales/administración & dosificación , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Ribonucleósidos/administración & dosificación , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/análogos & derivados , Alanina/administración & dosificación , Alanina/análogos & derivados , Animales , Profilaxis Antibiótica , Betacoronavirus/fisiología , COVID-19 , Línea Celular , Infecciones por Coronavirus/patología , Citidina/administración & dosificación , Citidina/análogos & derivados , Modelos Animales de Enfermedad , Farmacorresistencia Viral , Humanos , Hidroxilaminas , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Modelos Moleculares , Mutación/efectos de los fármacos , Pandemias , Neumonía Viral/patología , Cultivo Primario de Células , ARN Viral , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Distribución Aleatoria , Sistema Respiratorio/citología , SARS-CoV-2
11.
Nat Commun ; 11(1): 222, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924756

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Infecciones por Coronavirus/tratamiento farmacológico , Interferón beta/uso terapéutico , Lopinavir/uso terapéutico , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Ritonavir/uso terapéutico , Adenosina Monofosfato/uso terapéutico , Alanina/uso terapéutico , Animales , Antivirales/uso terapéutico , Carboxilesterasa/genética , Infecciones por Coronavirus/patología , Combinación de Medicamentos , Desarrollo de Medicamentos , Femenino , Humanos , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Noqueados , Carga Viral , Replicación Viral/efectos de los fármacos
12.
Front Immunol ; 11: 607314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488611

RESUMEN

Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV, MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents-C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virus-induced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X-the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Pulmón/virología , Virosis/genética , Animales , Teorema de Bayes , Células Epiteliales/virología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mucosa Respiratoria/virología , Transducción de Señal/genética
13.
Methods Mol Biol ; 2099: 173-194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31883096

RESUMEN

Mass spectrometry (MS)-based, integrated proteomics, metabolomics, and lipidomics (collectively, multi-omics) studies provide a very detailed snapshot of virus-induced changes to the host following infection and can lead to the identification of novel prophylactic and therapeutic targets for preventing or lessening disease severity. Multi-omics studies with Middle East respiratory syndrome coronavirus (MERS-CoV) are challenging as the requirements of biosafety level 3 containment limit the numbers of samples that can be safely managed. To address these issues, the multi-omics sample preparation technique MPLEx (metabolite, protein, and lipid extraction) was developed to partition a single sample into three distinct parts (metabolites, proteins, and lipids) for multi-omics analysis, while simultaneously inactivating MERS-CoV by solubilizing and disrupting the viral envelope and denaturing viral proteins. Here we describe the MPLEx protocol, highlight the step of inactivation, and describe the details of downstream processing, instrumental analysis of the three separate analytes, and their subsequent informatics pipelines.


Asunto(s)
Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno , Lípidos/aislamiento & purificación , Metabolómica , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Proteómica , Humanos , Espectrometría de Masas , Inactivación de Virus
14.
J Infect Dis ; 221(6): 919-926, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628848

RESUMEN

BACKGROUND: Human noroviruses (HuNoV) are the leading cause of gastroenteritis. No vaccine is currently available to prevent norovirus illness or infection. Safe, infectious challenge strains are needed to assess vaccine efficacy in the controlled human infection model (CHIM). METHODS: A stock of HuNoV strain Norwalk virus ([NV] GI.1) was prepared. Healthy, genetically susceptible adults were inoculated with NV Lot 001-09NV and monitored for infection, gastroenteritis symptoms, and immune responses. RESULTS: Lot 001-09NV induced gastroenteritis in 9 (56%) and infection in 11 (69%) of 16 genetically susceptible subjects. All infected subjects developed strong immune responses to GI.1 with a 30-fold (geometric mean titer) increase in blocking titers (BT50) and a 161-fold increase in GI.1-specific immunoglobulin (Ig)G titers when compared with baseline. GI.1-specific cellular responses in peripheral blood were observed 9 days postchallenge with an average of 3253 IgA and 1227 IgG antibody-secreting cells per million peripheral blood mononuclear cells. CONCLUSIONS: GI.1 Lot 001-09NV appears to be similar in virulence to previous passages of NV strain 8fIIa. The safety profile, attack rate, and duration of illness make GI.1 Lot 001-09NV a useful challenge strain for future vaccine studies aimed at establishing immune correlates.


Asunto(s)
Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/virología , Gastroenteritis/prevención & control , Gastroenteritis/virología , Virus Norwalk/clasificación , Vacunas Virales/inmunología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578288

RESUMEN

Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). ß-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 µM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 µM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, ß-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.


Asunto(s)
Antivirales/farmacología , Citidina/análogos & derivados , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Virus de la Hepatitis Murina/efectos de los fármacos , Virus de la Hepatitis Murina/genética , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Infecciones por Coronaviridae/tratamiento farmacológico , Infecciones por Coronaviridae/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Citidina/farmacología , Farmacorresistencia Viral , Exorribonucleasas/metabolismo , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Virus de la Hepatitis Murina/metabolismo , Mutagénesis , ARN Polimerasa Dependiente del ARN/metabolismo , Células Vero , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
16.
Front Cell Dev Biol ; 7: 200, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616667

RESUMEN

Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene's involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections.

17.
Antiviral Res ; 169: 104541, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31233808

RESUMEN

The genetically diverse Orthocoronavirinae (CoV) family is prone to cross species transmission and disease emergence in both humans and livestock. Viruses similar to known epidemic strains circulating in wild and domestic animals further increase the probability of emergence in the future. Currently, there are no approved therapeutics for any human CoV presenting a clear unmet medical need. Remdesivir (RDV, GS-5734) is a monophosphoramidate prodrug of an adenosine analog with potent activity against an array of RNA virus families including Filoviridae, Paramyxoviridae, Pneumoviridae, and Orthocoronavirinae, through the targeting of the viral RNA dependent RNA polymerase (RdRp). We developed multiple assays to further define the breadth of RDV antiviral activity against the CoV family. Here, we show potent antiviral activity of RDV against endemic human CoVs OC43 (HCoV-OC43) and 229E (HCoV-229E) with submicromolar EC50 values. Of known CoVs, the members of the deltacoronavirus genus have the most divergent RdRp as compared to SARS- and MERS-CoV and both avian and porcine members harbor a native residue in the RdRp that confers resistance in beta-CoVs. Nevertheless, RDV is highly efficacious against porcine deltacoronavirus (PDCoV). These data further extend the known breadth and antiviral activity of RDV to include both contemporary human and highly divergent zoonotic CoV and potentially enhance our ability to fight future emerging CoV.


Asunto(s)
Adenosina Monofosfato/farmacología , Antivirales/farmacología , Coronavirus/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Betacoronavirus/efectos de los fármacos , Línea Celular , Coronavirus/clasificación , Coronavirus/genética , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Porcinos , Replicación Viral/efectos de los fármacos
18.
Antiviral Res ; 167: 45-67, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30974127

RESUMEN

The International Society for Influenza and other Respiratory Virus Diseases held its 6th Antiviral Group (isirv-AVG) conference in Rockville, Maryland, November 13-15, 2018. The three-day program was focused on therapeutics towards seasonal and pandemic influenza, respiratory syncytial virus, coronaviruses including MERS-CoV and SARS-CoV, human rhinovirus, and other respiratory viruses. Updates were presented on several influenza antivirals including baloxavir, CC-42344, VIS410, immunoglobulin, immune plasma, MHAA4549A, pimodivir (JNJ-63623872), umifenovir, and HA minibinders; RSV antivirals including presatovir (GS-5806), ziresovir (AK0529), lumicitabine (ALS-008176), JNJ-53718678, JNJ-64417184, and EDP-938; broad spectrum antivirals such as favipiravir, VH244, remdesivir, and EIDD-1931/EIDD-2801; and host directed strategies including nitazoxanide, eritoran, and diltiazem. Other topics included considerations of novel endpoints such as ordinal scales and patient reported outcomes (PRO), and study design issues, and other regulatory considerations for antiviral drug development. The aim of this report is to provide a summary of the presentations given at this meeting.


Asunto(s)
Antivirales/farmacología , Infecciones del Sistema Respiratorio/terapia , Infecciones del Sistema Respiratorio/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/transmisión , Humanos , Gripe Humana/diagnóstico , Gripe Humana/tratamiento farmacológico , Gripe Humana/transmisión , Pandemias , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/patogenicidad
19.
mBio ; 9(2)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511076

RESUMEN

Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group ß-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.


Asunto(s)
Alanina/análogos & derivados , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , Exorribonucleasas/metabolismo , Ribonucleótidos/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Alanina/farmacología , Animales , Exorribonucleasas/química , Exorribonucleasas/genética , Ratones , Mutación/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
Proc Natl Acad Sci U S A ; 115(5): E1012-E1021, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339515

RESUMEN

Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.


Asunto(s)
Presentación de Antígeno , Epigénesis Genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Variación Antigénica , Línea Celular , Chlorocebus aethiops , Metilación de ADN , Perros , Regulación hacia Abajo , Histonas/química , Humanos , Células de Riñón Canino Madin Darby , Complejo Mayor de Histocompatibilidad , Mutación , Sistemas de Lectura Abierta , Proteómica , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...