Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Drug Target ; 31(9): 931-949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831630

RESUMEN

Biofilms are complex microbial communities formed by the attachment of bacteria or fungi to surfaces encased in a self-produced polymeric matrix. These biofilms are highly resistant to conventional antimicrobial therapies. The resistance mechanisms exhibited by biofilms include low antibiotic absorption, sluggish replication, adaptive stress response, and the formation of dormant-like phenotypes. The eradication of biofilms requires alternative strategies and approaches. Nanotechnological drug delivery systems allow excellent control over the drug chemistry, surface area, particle size, particle shape, and composition of nanostructures. Nanoformulations can enhance the efficacy of antimicrobial agents by improving their bioavailability, stability, and targeted delivery to the site of infection that helps biofilm eradication more effectively. In addition to nanoformulations, the route of administration and choice of dosage forms play a crucial role in treating biofilm infections. Systemic administration of antibiotics is effective in controlling systemic infection and sepsis associated with biofilms. Alternative routes of administration, such as inhalation, vaginal, ocular, or dermal, have been explored to target biofilm infections in specific organs. This review primarily examines the utilisation of nanoformulations in various administration routes for biofilm management. It also provides an overview of biofilms, current approaches, and the drawbacks associated with conventional methods.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Biopelículas , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...