Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38705163

RESUMEN

BACKGROUND: Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS: In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS: Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION: These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING: Bill & Melinda Gates Foundation.

2.
Malar J ; 21(1): 372, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474274

RESUMEN

BACKGROUND: In some settings, sensitive field diagnostic tools may be needed to achieve elimination of falciparum malaria. To this end, rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum protein HRP-2 are being developed with increasingly lower limits of detection. However, it is currently unclear how parasite stages that are unaffected by standard drug treatments may contribute to HRP-2 detectability and potentially confound RDT results even after clearance of blood stage infection. This study assessed the detectability of HRP-2 in periods of post-treatment residual gametocytaemia. METHODS: A cohort of 100 P. falciparum infected, gametocyte positive individuals were treated with or without the gametocytocidal drug primaquine (PQ), alongside standard artemisinin-based combination therapy (ACT), in the context of a randomised clinical trial in Ouelessebougou, Mali. A quantitative ELISA was used to measure levels of HRP-2, and compared time to test negativity using a standard and ultra-sensitive RDT (uRDT) between residual gametocyte positive and negative groups. RESULTS: Time to test negativity was longest by uRDT, followed by ELISA and then standard RDT. No significant difference in time to negativity was found between the treatment groups with and without residual gametocytes: uRDT (HR 0.79 [95% CI 0.52-1.21], p = 0.28), RDT (HR 0.77 [95% CI 0.51-1.15], p = 0.20) or ELISA (HR 0.88 [95% CI 0.59-1.32], p = 0.53). Similarly, no difference was observed when adjusting for baseline asexual parasite density. Quantified levels of HRP-2 over time were similar between groups, with differences attributable to asexual parasite densities. Furthermore, no difference in levels of HRP-2 was found between individuals who were or were not infectious to mosquitoes (OR 1.19 [95% CI 0.98-1.46], p = 0.077). CONCLUSIONS: Surviving sexual stage parasites after standard ACT treatment do not contribute to the persistence of HRP-2 antigenaemia, and appear to have little impact on RDT results.


Asunto(s)
Plasmodium falciparum , Humanos , Malí
3.
Lancet Microbe ; 3(5): e336-e347, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544095

RESUMEN

BACKGROUND: Tafenoquine was recently approved as a prophylaxis and radical cure for Plasmodium vivax infection, but its Plasmodium falciparum transmission-blocking efficacy is unclear. We aimed to establish the efficacy and safety of three single low doses of tafenoquine in combination with dihydroartemisinin-piperaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: In this four-arm, single-blind, phase 2, randomised controlled trial, participants were recruited at the Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako in Mali. Eligible participants were aged 12-50 years, with asymptomatic P falciparum microscopy-detected gametocyte carriage, had a bodyweight of 80 kg or less, and had no clinical signs of malaria defined by fever. Participants were randomly assigned (1:1:1:1) to standard treatment with dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus a single dose of tafenoquine (in solution) at a final dosage of 0·42 mg/kg, 0·83 mg/kg, or 1·66 mg/kg. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. Dihydroartemisinin-piperaquine was administered as oral tablets over 3 days (day 0, 1, and 2), as per manufacturer instructions. A single dose of tafenoquine was administered as oral solution on day 0 in parallel with the first dose of dihydroartemisinin-piperaquine. Tafenoquine dosing was based on bodyweight to standardise efficacy and risk variance. The primary endpoint, assessed in the per-protocol population, was median percentage change in mosquito infection rate 7 days after treatment compared with baseline. Safety endpoints included frequency and incidence of adverse events. The final follow-up visit was on Dec 23, 2021; the trial is registered with ClinicalTrials.gov, NCT04609098. FINDINGS: From Oct 29 to Nov 25, 2020, 1091 individuals were screened for eligibility, 80 of whom were enrolled and randomly assigned (20 per treatment group). Before treatment, 53 (66%) individuals were infectious to mosquitoes, infecting median 12·50% of mosquitoes (IQR 3·64-35·00). Within-group reduction in mosquito infection rate on day 7 was 79·95% (IQR 57·15-100; p=0·0005 for difference from baseline) following dihydroartemisinin-piperaquine only, 100% (98·36-100; p=0·0005) following dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg, 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg, and 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg. 55 (69%) of 80 participants had a total of 94 adverse events over the course of the trial; 86 (92%) adverse events were categorised as mild, seven (7%) as moderate, and one (1%) as severe. The most common treatment-related adverse event was mild or moderate headache, which occurred in 15 (19%) participants (dihydroartemisinin-piperaquine n=2; dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg n=6; dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg n=3; and dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg n=4). No serious adverse events occurred. No significant differences in the incidence of all adverse events (p=0·73) or treatment-related adverse events (p=0·62) were observed between treatment groups. INTERPRETATION: Tafenoquine was well tolerated at all doses and accelerated P falciparum gametocyte clearance. All tafenoquine doses showed improved transmission reduction at day 7 compared with dihydroartemisinin-piperaquine alone. These data support the case for further research on tafenoquine as a transmission-blocking supplement to standard antimalarials. FUNDING: Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Portuguese, Spanish and Swahili translations of the abstract see Supplementary Materials section.


Asunto(s)
Artemisininas , Malaria Falciparum , Malaria , Aminoquinolinas , Animales , Artemisininas/efectos adversos , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malí/epidemiología , Piperazinas , Plasmodium falciparum , Quinolinas , Método Simple Ciego
4.
Lancet Microbe ; 3(1): e41-e51, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028628

RESUMEN

BACKGROUND: Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS: Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION: These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section.


Asunto(s)
Antimaláricos , Malaria Falciparum , Adolescente , Adulto , Animales , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Artesunato/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Humanos , Malaria Falciparum/prevención & control , Malí/epidemiología , Persona de Mediana Edad , Naftiridinas/uso terapéutico , Piperazinas , Primaquina/uso terapéutico , Quinolinas , Método Simple Ciego , Adulto Joven
5.
Parasit Vectors ; 13(1): 239, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384907

RESUMEN

BACKGROUND: Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors. METHODS: For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex. RESULTS: In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions. CONCLUSIONS: Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Butóxido de Piperonilo , Piretrinas , Animales , Bioensayo , Femenino , Mosquiteros Tratados con Insecticida , Larva , Malaria/prevención & control , Malí , Control de Mosquitos , Mosquitos Vectores
6.
Am J Trop Med Hyg ; 97(3): 719-725, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28722588

RESUMEN

Malaria transmission-blocking vaccines (TBV) have been evaluated in field trials in Mali since 2013. However, the assays currently used to measure serum antibody TB activity (TBA) after vaccination are highly variable, in part due to the lack of optimization and standardization for field assays in which mosquitoes feed on gametocytemic blood. Herein, we report a study conducted in Bancoumana village, Mali, where we identify and optimize the parameters that contribute to successful mosquito feeding outcomes in both direct skin feeds (DSFs) and direct membrane feeding assays (DMFA). These parameters include: 1) mosquito age, 2) duration of mosquito starvation prior to feeding, 3) membrane selection for DMFA, 4) anatomical location of DSF feeding (arm, calf, and ankle), and 5) time of day for DSF (dawn or dusk). We found that younger mosquitoes were significantly associated with higher feeding, survival, and infection rates. Longer starvation times were positively, but not significantly, associated with higher infection rates, but were negatively associated with feeding and survival. Membrane type and body location did not affect infection outcome significantly. Although dusk was found to be associated with higher infection rates, this may be confounded by the time from positive blood smear. Based on these findings, we make specific recommendations for optimal feeding parameters in the different assay types to maximize the chance of detecting parasite transmission in a standardized manner.


Asunto(s)
Anopheles/fisiología , Insectos Vectores/fisiología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Membranas Artificiales , Plasmodium falciparum/fisiología , Adolescente , Adulto , Envejecimiento , Animales , Anopheles/parasitología , Conducta Alimentaria , Humanos , Insectos Vectores/parasitología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malí/epidemiología , Parasitemia/transmisión , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...