Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808860

RESUMEN

The asexual stages of Toxoplasma gondii are defined by the rapidly growing tachyzoite during the acute infection and by the slow growing bradyzoite housed within tissue cysts during the chronic infection. These stages represent unique physiological states, each with distinct glucans reflecting differing metabolic needs. A defining feature of T. gondii bradyzoites is the presence of insoluble storage glucans known as amylopectin granules (AGs) that are believed to play a role in reactivation, but their functions during the chronic infection remain largely unexplored. More recently, the presence of storage glucans has been recognized in tachyzoites where their precise function and architecture have yet to be fully defined. Importantly, the T. gondii genome encodes activities needed for glucan turnover: a glucan phosphatase (TgLaforin; TGME49_205290) and a glucan kinase (TgGWD; TGME49_214260) that catalyze a cycle of reversible glucan phosphorylation required for glucan degradation by amylases. The expression of these enzymes in tachyzoites supports the existence of a storage glucan, evidence that is corroborated by specific labeling with the anti-glycogen antibody IV58B6. Disruption of reversible glucan phosphorylation via a CRISPR/Cas9 knockout (KO) of TgLaforin revealed no growth defects under nutrient-replete conditions in tachyzoites. However, the growth of TgLaforin-KO tachyzoites was severely stunted when starved of glutamine, even under glucose replete conditions. The loss of TgLaforin also resulted in the attenuation of acute virulence in mice accompanied by a lower cyst burden. Defective cyst formation due to profound changes in AG morphology was also observed in TgLaforin-KO parasites, both in vitro and in vivo. Together, these data demonstrate the importance of glucan turnover across the T. gondii asexual cycle. These findings, alongside our previously identified class of small molecules that inhibit TgLaforin, implicate reversible glucan phosphorylation as a legitimate target for the development of new drugs against chronic T. gondii infections.

2.
Infect Immun ; 91(7): e0056622, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37358419

RESUMEN

Recent advances into the unique biology of Toxoplasma tissue cysts and the bradyzoites they house necessitate optimization of tissue cyst recovery from infected mouse brains. Here, we present data from 83 tissue cyst purifications of Type II ME49 tissue cysts in CBA/J mice performed over a period of 3 years. The effects of infection with both tissue culture tachyzoites as well as ex vivo tissue cysts were assessed. Significant mortality was restricted to tachyzoite infections with female mice being more susceptible. Infection with tissue cysts was associated with both lower overall symptomology and mortality, exhibiting no sex bias. Cumulatively, host sex did not impact overall tissue cyst yields, although tachyzoite-initiated infections generated significantly higher yields compared to tissue cyst-initiated infections. Notably, serial passage of tissue cysts was accompanied with a decreasing trend for subsequent cyst recovery. The time of tissue cyst harvest, a potential reflection of bradyzoite physiological state, had no significant impact on subsequent cyst yield at the selected time points. In aggregate, these data reveal the considerable heterogeneity associated with tissue cyst yield, making the design of adequately powered experiments critical. This is particularly the case for drug studies where overall tissue cyst burden is currently the primary and often sole metric of efficacy, as the data presented here demonstrate that cyst recovery between preparations of untreated animals can mirror and even exceed the reported effects of drug treatment.


Asunto(s)
Toxoplasma , Toxoplasmosis , Ratones , Femenino , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos CBA , Toxoplasma/fisiología
3.
PLoS One ; 18(2): e0280746, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730225

RESUMEN

The mitochondrion is intimately linked to energy and overall metabolism and therefore the morphology of mitochondrion can be very informative for inferring the metabolic state of cells. In this study we report an approach for automatic classification of mitochondrial morphologies using supervised machine learning to efficiently classify them from a large number of cells at a time. Fluorescence microscopy images of the chronic encysted form of parasite Toxoplasma gondii were used for this development. Manually classifying these morphologies from the hundreds of parasites within typical tissue cysts is tedious and error prone. In addition, because of inherent biological heterogeneity in morphologies, there can be variability and lack of reproducibility in manual classification. We used image segmentation to detect mitochondrial shapes and used features extracted from them in a multivariate logistic regression model to classify the detected shapes into five morphological classes: Blobs, Tadpoles, Lasso/Donuts, Arcs, and Other. The detected shapes from a subset of images were first used to obtain consensus classification among expert users to obtain a labeled set. The model was trained using the labeled set from five cysts and its performance was tested on the mitochondrial morphologies from ten other cysts that were not used in training. Results showed that the model had an average overall accuracy of 87%. There was high degree of confidence in the classification of Blobs and Arcs (average F scores 0.91 and 0.73) which constituted the majority of morphologies (85%). Although the current development used microscopy images from tissue cysts of Toxoplasma gondii, the approach is adaptable with minor adjustments and can be used to automatically classify morphologies of organelles from a variety of cells.


Asunto(s)
Quistes , Toxoplasma , Humanos , Reproducibilidad de los Resultados , Aprendizaje Automático , Microscopía Fluorescente , Mitocondrias , Quistes/diagnóstico por imagen
4.
J Biol Chem ; 298(7): 102089, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640720

RESUMEN

Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Glucanos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Polisacáridos/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3509-3513, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891996

RESUMEN

Toxoplasma gondii is a parasite that chronically infects about a third of the world's population. During chronic infection, the parasite resides within tissue cysts in the form of poorly understood bradyzoites which can number in the thousands. Our prior work showed that these bradyzoites are metabolically active exhibiting heterogeneous replication potential. The morphological plasticity of the mitochondrion potentially informs about parasite metabolic state. We developed an image processing based program to assist manual classification of mitochondrial morphologies by trained operators to collect data and statistics from the manual classification of shapes. We sought to determine whether certain morphologies were readily classifiable and the congruence among manual classifiers, i.e. the degree to which different operators would place the same objects within the same class. Results from three operators classifying mitochondrial morphologies from 5 tissue cyst images showed that among the four classes, one (Blobs) were the easiest to classify. There was remarkable congruence between 2 of the 3 operators in classifying the objects (96%), while the agreement among all 3 operators was somewhat modest (57%). Such information would be valuable for biologists studying these parasites as well as in development of fully automated methods of morphological classification.


Asunto(s)
Mitocondrias , Toxoplasma , Computadores , Mitocondrias/ultraestructura , Toxoplasma/ultraestructura
6.
J STEM Outreach ; 4(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174320

RESUMEN

The STEM Through Authentic Research and Training (START) Program is a new program integrating academic, social, and professional experiences, in the theme of exomedicine, to build a pipeline into college for first generation and traditionally underrepresented students by providing year-round authentic opportunities and professional development for high school students and teachers. In response to the COVID-19 pandemic, the START Program has worked with the local Fayette County public school and community partners to provide content to over 300 students through: virtual laboratory tours with community partner Space Tango, "meet a scientist" discussions, and online near-peer student demonstrations aimed at making the practice of STEM disciplines approachable. Furthermore, the START Program has partnered with Higher Orbits to provide at-home, space-themed learning kits for students to develop teamwork, communication, and STEM principles while engaging in online content with teachers, professionals, and astronauts. Finally, the START Program has moved its training platforms online, including receiving College Reading and Learning Association (CRLA) Peer Educator accreditation for our near-peer mentoring and coaching training. As a result, the START Program is better positioned to address this critical need in STEM education, while reaching more students in the community than possible with face-to-face interactions alone.

7.
Curr Opin Microbiol ; 58: 99-105, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065371

RESUMEN

The life cycle of Toxoplasma gondii is characterized by active replication alternating with periods of rest. Encysted dormant sporozoites and bradyzoites initiate active replication as tachyzoites and merozoites. Here we explore the role of the cell cycle with a focus on the canonical G1 RESTRICTION checkpoint (R-point) as the integrator governing developmental decisions in T. gondii. This surveillance mechanism, which licenses replication, creates a window of opportunity in G1 for cellular reorganization in the execution of developmental transitions. We also explore the unique status of the bradyzoite, the only life cycle stage executing both a forward (entry into the sexual cycle) and reverse (recrudescence) developmental transitions as a multipotent cell. These opposing decisions are executed through the common machinery of the RESTRICTION checkpoint.


Asunto(s)
Puntos de Control del Ciclo Celular , Toxoplasma/citología , Animales , Humanos , Estadios del Ciclo de Vida , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32626661

RESUMEN

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Ratones , Plasmodium falciparum
9.
J Immunol ; 203(4): 1021-1030, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31263039

RESUMEN

Azithromycin is effective at controlling exaggerated inflammation and slowing the long-term decline of lung function in patients with cystic fibrosis. We previously demonstrated that the drug shifts macrophage polarization toward an alternative, anti-inflammatory phenotype. In this study we investigated the immunomodulatory mechanism of azithromycin through its alteration of signaling via the NF-κB and STAT1 pathways. J774 murine macrophages were plated, polarized (with IFN-γ, IL-4/-13, or with azithromycin plus IFN-γ) and stimulated with LPS. The effect of azithromycin on NF-κB and STAT1 signaling mediators was assessed by Western blot, homogeneous time-resolved fluorescence assay, nuclear translocation assay, and immunofluorescence. The drug's effect on gene and protein expression of arginase was evaluated as a marker of alternative macrophage activation. Azithromycin blocked NF-κB activation by decreasing p65 nuclear translocation, although blunting the degradation of IκBα was due, at least in part, to a decrease in IKKß kinase activity. A direct correlation was observed between increasing azithromycin concentrations and increased IKKß protein expression. Moreover, incubation with the IKKß inhibitor IKK16 decreased arginase expression and activity in azithromycin-treated cells but not in cells treated with IL-4 and IL-13. Importantly, azithromycin treatment also decreased STAT1 phosphorylation in a concentration-dependent manner, an effect that was reversed with IKK16 treatment. We conclude that azithromycin anti-inflammatory mechanisms involve inhibition of the STAT1 and NF-κB signaling pathways through the drug's effect on p65 nuclear translocation and IKKß.


Asunto(s)
Azitromicina/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
10.
J Eukaryot Microbiol ; 65(6): 934-939, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29722096

RESUMEN

The 14th International Workshops on Opportunistic Protists (IWOP-14) was held August 10-12, 2017 in Cincinnati, OH, USA. The IWOP meetings focus on opportunistic protists (OIs); for example, free-living amoebae, Pneumocystis spp., Cryptosporidium spp., Toxoplasma, the Microsporidia, and kinetoplastid flagellates. The highlights of Pneumocystis spp. research included the reports of primary homothallism for mating; a potential requirement for sexual replication in its life cycle; a new antigen on the surface of small asci; roles for CLRs, Dectin-1, and Mincle in host responses; and identification of MSG families and mechanisms used for surface variation. Studies of Cryptosporidia spp. included comparative genomics, a new cryopreservation method; the role of mucin in attachment and invasion, and epidemiological surveys illustrating species diversity in animals. One of the five identified proteins in the polar tube of Microsporidia, PTP4, was shown to play a role in host infection. Zebrafish were used as a low cost vertebrate animal model for an evaluation of potential anti-toxoplasma drugs. Folk medicine compounds with anti-toxoplasma activity were presented, and reports on the chronic toxoplasma infection provided evidence for increased tractability for the study of this difficult life cycle stage. Escape from the parasitophorus vacuole and cell cycle regulation were the topics of the study in the acute phase.


Asunto(s)
Eucariontes , Infecciones Oportunistas/parasitología , Animales , Antígenos de Protozoos , Congresos como Asunto , Cryptosporidium , Modelos Animales de Enfermedad , Eucariontes/patogenicidad , Humanos , Kinetoplastida , Lectinas Tipo C/metabolismo , Estadios del Ciclo de Vida , Microsporidios , Mucinas/metabolismo , Ohio , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/epidemiología , Infecciones Oportunistas/inmunología , Pneumocystis , Toxoplasma/patogenicidad , Toxoplasmosis/tratamiento farmacológico , Pez Cebra
11.
Innate Immun ; 24(3): 152-162, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29482417

RESUMEN

Macrophages are important innate immune cells that respond to microbial insults. In response to multi-bacterial infection, the macrophage activation state may change upon exposure to nascent mediators, which results in different bacterial killing mechanism(s). In this study, we utilized two respiratory bacterial pathogens, Mycobacterium bovis (Bacillus Calmette Guerin, BCG) and Francisella tularensis live vaccine strain (LVS) with different phagocyte evasion mechanisms, as model microbes to assess the influence of initial bacterial infection on the macrophage response to secondary infection. Non-activated (M0) macrophages or activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene) were first infected with BCG for 24-48 h, subsequently challenged with LVS, and the results of inhibition of LVS replication in the macrophages was assessed. BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS. BCG infection had little effect on LVS escape from phagosomes into the cytosol in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced endosomal acidification, as well as inhibiting LVS replication. Pre-infection with BCG did not induce NO production and thus did not further reduce LVS replication. This study provides a model for studies of the complexity of macrophage activation in response to multi-bacterial infection.


Asunto(s)
Infecciones Bacterianas/inmunología , Coinfección/inmunología , Macrófagos/inmunología , Fagosomas/inmunología , Animales , Polaridad Celular , Endosomas/inmunología , Humanos , Evasión Inmune , Inmunidad Innata/inmunología , Interleucina-4/biosíntesis , Ratones , Infecciones por Mycobacterium/inmunología , Mycobacterium bovis/inmunología , Óxido Nítrico/biosíntesis , Transducción de Señal/inmunología , Transfección , Tularemia/inmunología , Vacunas Vivas no Atenuadas
12.
mBio ; 8(6)2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162714

RESUMEN

The Toxoplasma genome encodes the capacity for distinct architectures underlying cell cycle progression in a life cycle stage-dependent manner. Replication in intermediate hosts occurs by endodyogeny, whereas a hybrid of schizogony and endopolygeny occurs in the gut of the definitive feline host. Here, we characterize the consequence of the loss of a cell cycle-regulated ovarian tumor (OTU family) deubiquitinase, OTUD3A of Toxoplasma gondii (TgOTUD3A; TGGT1_258780), in T. gondii tachyzoites. Rather than the mutation being detrimental, mutant parasites exhibited a fitness advantage, outcompeting the wild type. This phenotype was due to roughly one-third of TgOTUD3A-knockout (TgOTUD3A-KO) tachyzoites exhibiting deviations from endodyogeny by employing replication strategies that produced 3, 4, or 5 viable progeny within a gravid mother instead of the usual 2. We established the mechanistic basis underlying these altered replication strategies to be a dysregulation of centrosome duplication, causing a transient loss of stoichiometry between the inner and outer cores that resulted in a failure to terminate S phase at the attainment of 2N ploidy and/or the decoupling of mitosis and cytokinesis. The resulting dysregulation manifested as deviations in the normal transitions from S phase to mitosis (S/M) (endopolygeny-like) or M phase to cytokinesis (M/C) (schizogony-like). Notably, these imbalances are corrected prior to cytokinesis, resulting in the generation of normal progeny. Our findings suggest that decisions regarding the utilization of specific cell cycle architectures are controlled by a ubiquitin-mediated mechanism that is dependent on the absolute threshold levels of an as-yet-unknown target(s). Analysis of the TgOTUD3A-KO mutant provides new insights into mechanisms underlying the plasticity of apicomplexan cell cycle architecture.IMPORTANCE Replication by Toxoplasma gondii can occur by 3 distinct cell cycle architectures. Endodyogeny is used by asexual stages, while a hybrid of schizogony and endopolygeny is used by merozoites in the definitive feline host. Here, we establish that the disruption of an ovarian-tumor (OTU) family deubiquitinase, TgOTUD3A, in tachyzoites results in dysregulation of the mechanism controlling the selection of replication strategy in a subset of parasites. The mechanistic basis for these altered cell cycles lies in the unique biology of the bipartite centrosome that is associated with the transient loss of stoichiometry between the inner and outer centrosome cores in the TgOTUD3A-KO mutant. This highlights the importance of ubiquitin-mediated regulation in the transition from the nuclear to the budding phases of the cell cycle and provides new mechanistic insights into the regulation of the organization of the apicomplexan cell cycle.


Asunto(s)
Ciclo Celular/genética , Enzimas Desubicuitinizantes/genética , Regulación de la Expresión Génica , Estadios del Ciclo de Vida/genética , Toxoplasma/genética , Puntos de Control del Ciclo Celular/genética , Centrosoma/metabolismo , Citocinesis/genética , Replicación del ADN , Microscopía Electrónica , Mutación , Toxoplasma/enzimología , Toxoplasma/ultraestructura
13.
Curr Protoc Microbiol ; 45: 20C.2.1-20C.2.19, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28510363

RESUMEN

The protozoan parasite Toxoplasma gondii is capable of infecting all warm-blooded animals and humans. Infectious, transmissible forms of the parasite include oocysts produced by the sexual cycle within the definitive feline host and tissue cysts that form Toxoplasma in the central nervous system and muscle during the asexual cycle within all chronically infected warm-blooded hosts. These tissue cysts are populated with slow-growing bradyzoites, which until recently have been thought to be dormant entities in the context of immune sufficiency. Reactivation to active growth during immune suppression is of critical clinical importance. However, little is known about tissue cysts or the bradyzoites they house, as the diversity of tissue cysts cannot be replicated in cell culture systems. This protocol for optimization of tissue cyst purification from the brains of infected mice using Percoll gradients provides an efficient means to recover in vivo-derived tissue cysts that can be applied to imaging, cell biological, biochemical, transcriptomic, and proteomic analyses. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Encéfalo/parasitología , Centrifugación por Gradiente de Densidad/métodos , Oocistos/aislamiento & purificación , Parasitología/métodos , Toxoplasma/aislamiento & purificación , Animales , Ratones , Povidona , Dióxido de Silicio , Toxoplasmosis Animal/parasitología
14.
mSphere ; 1(3)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27340699

RESUMEN

The contribution of ubiquitin-mediated mechanisms in the regulation of the Toxoplasma gondii cell cycle has remained largely unexplored. Here, we describe the functional characterization of a T. gondii deubiquitinase (TGGT1_258780) of the ovarian-tumor domain-containing (OTU) family, which, based on its structural homology to the human OTUD3 clade, has been designated TgOTUD3A. The TgOTUD3A protein is expressed in a cell cycle-dependent manner mimicking its mRNA expression, indicating that it is regulated primarily at the transcriptional level. TgOTUD3A, which was found in the cytoplasm at low levels in G1 parasites, increased in abundance with the progression of the cell cycle and exhibited partial localization to the developing daughter scaffolds during cytokinesis. Recombinant TgOTUD3A but not a catalytic-site mutant TgOTUD3A (C229A) exhibited activity against poly- but not monoubiquitinated targets. This activity was selective for polyubiquitin chains with preference for specific lysine linkages (K48 > K11 > K63). All three of these polyubiquitin linkage modifications were found to be present in Toxoplasma, where they exhibited differential levels and localization patterns in a cell cycle-dependent manner. TgOTUD3A removed ubiquitin from the K48- but not the K63-linked ubiquitinated T. gondii proteins independently of the modified target protein, thereby exhibiting the characteristics of an exodeubiquitinase. In addition to cell cycle association, the demonstration of multiple ubiquitin linkages together with the selective deubiquitinase activity of TgOTUD3A reveals an unappreciated level of complexity in the T. gondii "ubiquitin code." IMPORTANCE The role of ubiquitin-mediated processes in the regulation of the apicomplexan cell cycle is beginning to be elucidated. The recent analysis of the Toxoplasma "ubiquitome" highlights the importance of ubiquitination in the parasite cell cycle. The machinery regulating the ubiquitin dynamics in T. gondii has remained understudied. Here, we provide a biochemical characterization of an OTU (ovarian tumor) family deubiquitinase, TgOTUD3A, defining its localization and dynamic expression pattern at various stages of the cell cycle. We further establish that TgOTUD3A has activity preference for polyubiquitin chains with certain lysine linkages-such unique activity has not been previously reported in any apicomplexan. This is particularly important given the finding in this study that Toxoplasma gondii proteins are modified by diverse lysine-linked polyubiquitin chains and that these modifications are very dynamic across the cell cycle, pointing toward the sophistication of the "ubiquitin code" as a potential mechanism to regulate parasite biology.

15.
Curr Clin Microbiol Rep ; 3(4): 175-185, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28191447

RESUMEN

PURPOSE OF REVIEW: Despite over a third of the world's population being chronically infected with Toxoplasma gondii, little is known about this largely asymptomatic phase of infection. This stage is mediated in vivo by bradyzoites within tissue cysts. The absence of overt symptoms has been attributed to the dormancy of bradyzoites. In this review, we reexamine the conventional view of chronic toxoplasmosis in light of emerging evidence challenging both the nature of dormancy and the consequences of infection in the CNS. RECENT FINDINGS: New and emerging data reveal a previously unrecognized level of physiological and replicative capacity of bradyzoites within tissue cysts. These findings have emerged in the context of a reexamination of the chronic infection in the brain that correlates with changes in neuronal architecture, neurochemistry, and behavior that suggest that the chronic infection is not without consequence. SUMMARY: The emerging data driven by the development of new approaches to study the progression of chronic toxoplasma infection reveals significant physiological and replicative capacity for what has been viewed as a dormant state. The emergence of bradyzoite and tissue cyst biology from what was viewed as a physiological "black box" offers exciting new areas for investigation with direct implications on the approaches to drug development targeting this drug-refractory state. In addition, new insights from studies on the neurobiology on chronic infection reveal a complex and dynamic interplay between the parasite, brain microenvironment, and the immune response that results in the detente that promotes the life-long persistence of the parasite in the host.

16.
mBio ; 6(5): e01155-15, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26350965

RESUMEN

UNLABELLED: Despite their critical role in chronic toxoplasmosis, the biology of Toxoplasma gondii bradyzoites is poorly understood. In an attempt to address this gap, we optimized approaches to purify tissue cysts and analyzed the replicative potential of bradyzoites within these cysts. In order to quantify individual bradyzoites within tissue cysts, we have developed imaging software, BradyCount 1.0, that allows the rapid establishment of bradyzoite burdens within imaged optical sections of purified tissue cysts. While in general larger tissue cysts contain more bradyzoites, their relative "occupancy" was typically lower than that of smaller cysts, resulting in a lower packing density. The packing density permits a direct measure of how bradyzoites develop within cysts, allowing for comparisons across progression of the chronic phase. In order to capture bradyzoite endodyogeny, we exploited the differential intensity of TgIMC3, an inner membrane complex protein that intensely labels newly formed/forming daughters within bradyzoites and decays over time in the absence of further division. To our surprise, we were able to capture not only sporadic and asynchronous division but also synchronous replication of all bradyzoites within mature tissue cysts. Furthermore, the time-dependent decay of TgIMC3 intensity was exploited to gain insights into the temporal patterns of bradyzoite replication in vivo. Despite the fact that bradyzoites are considered replicatively dormant, we find evidence for cyclical, episodic bradyzoite growth within tissue cysts in vivo. These findings directly challenge the prevailing notion of bradyzoites as dormant nonreplicative entities in chronic toxoplasmosis and have implications on our understanding of this enigmatic and clinically important life cycle stage. IMPORTANCE: The protozoan Toxoplasma gondii establishes a lifelong chronic infection mediated by the bradyzoite form of the parasite within tissue cysts. Technical challenges have limited even the most basic studies on bradyzoites and the tissue cysts in vivo. Bradyzoites, which are viewed as dormant, poorly replicating or nonreplicating entities, were found to be surprisingly active, exhibiting not only the capacity for growth but also previously unrecognized patterns of replication that point to their being considerably more dynamic than previously imagined. These newly revealed properties force us to reexamine the most basic questions regarding bradyzoite biology and the progression of the chronic phase of toxoplasmosis. By developing new tools and approaches to study the chronic phase at the level of bradyzoites, we expose new avenues to tackle both drug development and a better understanding of events that may lead to reactivated symptomatic disease.


Asunto(s)
Quistes/parasitología , Toxoplasma/fisiología , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones Endogámicos CBA , Carga de Parásitos/métodos , Programas Informáticos , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis Animal
17.
PLoS One ; 8(11): e79059, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278114

RESUMEN

Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQR(CS)) as quantified by CQ IC50 shift, account for only 10-20% of cytocidal CQR (CQR(CC)) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQR(CS) vs CQR(CC) phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQR(CC), leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQR(CC). Taken together, the data show that an unusual autophagy-like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQR(CC) phenotype.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Plasmodium falciparum/efectos de los fármacos , Autofagia/efectos de los fármacos , Resistencia a Medicamentos , Proteínas Protozoarias/metabolismo , Transducción de Señal/efectos de los fármacos
18.
J Eukaryot Microbiol ; 60(3): 298-308, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23560871

RESUMEN

The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms.


Asunto(s)
Eucariontes , Acanthamoeba , Animales , Blastocystis , Congresos como Asunto , Cryptosporidium , Giardia , Microsporidios , Pneumocystis , Toxoplasma
19.
Int J Parasitol ; 42(10): 947-59, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22940576

RESUMEN

A critical step in the pathogenesis of Toxoplasma gondii is conversion from the fast-replicating tachyzoite form experienced during acute infection to the slow-replicating bradyzoite form that establishes long-lived tissue cysts during chronic infection. Bradyzoite cyst development exhibits a clear tissue tropism in vivo, yet conditions of the host cell environment that influence this tropism remain unclear. Using an in vitro assay of bradyzoite conversion, we have found that cell types differ dramatically in the ability to facilitate differentiation of tachyzoites into bradyzoites. Characterization of cell types that were either resistant or permissive for conversion revealed that resistant cell lines release low molecular weight metabolites that could support tachyzoite growth under metabolic stress conditions and thereby inhibit bradyzoite formation in permissive cells. Biochemical analysis revealed that the glycolytic metabolite lactate is an inhibitory component of supernatants from resistant cells. Furthermore, upregulation of glycolysis in permissive cells through the addition of glucose or by overexpression of the host kinase, Akt, was sufficient to convert cells from a permissive to a resistant phenotype. These results suggest that the metabolic state of the host cell may play a role in determining the predilection of the parasite to switch from the tachyzoite to bradyzoite form.


Asunto(s)
Toxoplasma/citología , Toxoplasma/crecimiento & desarrollo , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Trends Parasitol ; 28(9): 358-64, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22819059

RESUMEN

Programmed cell death (PCD) pathways remain understudied in parasitic protozoa in spite of the fact that they provide potential targets for the development of new therapy. The best understood PCD pathway in higher eukaryotes is apoptosis although emerging evidence also points to autophagy as a mediator of death in certain physiological contexts. Bioinformatic analyses coupled with biochemical and cell biological studies suggest that parasitic protozoa possess the capacity for PCD including a primordial form of apoptosis. Recent work in Toxoplasma and emerging data from Plasmodium suggest that autophagy-related processes may serve as an additional death promoting pathway in Apicomplexa. Detailed mechanistic studies into the molecular basis for PCD in parasitic protozoa represent a fertile area for investigation and drug development.


Asunto(s)
Apicomplexa/fisiología , Autofagia , Antimaláricos/farmacología , Apicomplexa/efectos de los fármacos , Apoptosis , Autofagia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...