Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 27(20): 7102-12, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17709387

RESUMEN

Protein tyrosine phosphatases (PTPs) are key mediators that link physiological cues with reversible changes in protein structure and function; nevertheless, significant details concerning their regulation in vivo remain unknown. We demonstrate that PTPepsilon associates with microtubules in vivo and is inhibited by them in a noncompetitive manner. Microtubule-associated proteins, which interact strongly with microtubules in vivo, significantly increase binding of PTPepsilon to tubulin in vitro and further reduce phosphatase activity. Conversely, disruption of microtubule structures in cells reduces their association with PTPepsilon, alters the subcellular localization of the phosphatase, and increases its specific activity. Activation of the epidermal growth factor receptor (EGFR) increases the PTPepsilon-microtubule association in a manner dependent upon EGFR-induced phosphorylation of PTPepsilon at Y638 and upon microtubule integrity. These events are transient and occur with rapid kinetics similar to EGFR autophosphorylation, suggesting that activation of the EGFR transiently down-regulates PTPepsilon activity near the receptor by promoting the PTPepsilon-microtubule association. Tubulin also inhibits the tyrosine phosphatase PTP1B but not receptor-type PTPmu or the unrelated alkaline phosphatase. The data suggest that reversible association with microtubules is a novel, physiologically regulated mechanism for regulation of tyrosine phosphatase activity in cells.


Asunto(s)
Receptores ErbB/metabolismo , Isoenzimas/metabolismo , Microtúbulos/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Receptores ErbB/genética , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , Tubulina (Proteína)/metabolismo
2.
Mol Biol Cell ; 17(10): 4330-42, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16870705

RESUMEN

Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPepsilon and PTPalpha differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo.


Asunto(s)
Regulación de la Expresión Génica , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Células de Schwann/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Fosforilación , Canales de Potasio con Entrada de Voltaje/fisiología , Proteínas Tirosina Fosfatasas/genética , Nervio Ciático/metabolismo , Canales de Potasio Shab/metabolismo , Familia-src Quinasas/metabolismo
3.
Mol Cell Biol ; 23(15): 5460-71, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12861030

RESUMEN

cyt-PTP epsilon is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTP epsilon enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPalpha) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTP epsilon forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTP epsilon readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTP epsilon dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTP epsilon, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTP epsilon is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTP epsilon activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTP epsilon lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTP epsilon in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/fisiología , Células 3T3 , Animales , Línea Celular , Membrana Celular/metabolismo , Cromatografía en Gel , ADN Complementario/metabolismo , Canales de Potasio de Tipo Rectificador Tardío , Dimerización , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Modelos Biológicos , Fosforilación , Canales de Potasio/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores , Canales de Potasio Shab , Transducción de Señal , Temperatura , Factores de Tiempo , Transfección , Tirosina/metabolismo
4.
Mol Cancer Res ; 1(7): 541-50, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12754301

RESUMEN

Mitogen-activated protein kinases (MAPKs) mediate signaling from the cell membrane to the nucleus following their phosphorylation at conserved threonine and tyrosine residues within their activation loops. We show that protein tyrosine phosphatase epsilon (PTP epsilon) inhibits ERK1 and ERK2 kinase activity and reduces their phosphorylation; in agreement, ERK phosphorylation is increased in fibroblasts and in mammary tumor cells from mice genetically lacking PTP epsilon. PTP epsilon inhibits events downstream of ERKs, such as transcriptional activation mediated by Elk1 or by the serum response element. PTP epsilon also inhibits transcriptional activation mediated by c-Jun and C/EBP binding protein (CHOP) but not that mediated by the unrelated NFkB, attesting that it is broadly active within the MAPK family but otherwise specific. The effect of PTP epsilon on ERKs is at least in part indirect because phosphorylation of the threonine residue in the ERK activation loop is reduced in the presence of PTP epsilon. Nonetheless, PTP epsilon is present in a molecular complex with ERK, providing PTP epsilon with opportunity to act on ERK proteins also directly. We conclude that PTP epsilon is a physiological inhibitor of ERK signaling. Slow induction of PTP epsilon and its lack of nuclear translocation following mitogenic stimulation suggest that PTP epsilon functions to prevent inappropriate activation and to terminate prolonged, rather than acute, activation of ERK in the cytosol.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Células 3T3 , Animales , Línea Celular , Clonación Molecular , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Recombinantes/metabolismo , Transfección
5.
Proc Natl Acad Sci U S A ; 99(8): 5400-5, 2002 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-11943866

RESUMEN

Apoptosis is characterized by a translation switch from cap-dependent to internal ribosome entry site (IRES)-mediated protein translation. During apoptosis, several members of the eukaryotic initiation factor (eIF)4G family are cleaved specifically by caspases. Here we investigated which of the caspase-cleaved eIF4G family members could support cap-independent translation through IRES elements that retain activity in the dying cell. We focused on two major fragments arising from the cleavage of eIF4GI and death-associated protein 5 (DAP5) proteins (eIF4GI M-FAG/p76 and DAP5/p86, respectively), because they are the only potential candidates to preserve the minimal scaffold function needed to mediate translation. Transfection-based experiments in cell cultures indicated that expression of DAP5/p86 in cells stimulated protein translation from the IRESs of c-Myc, Apaf-1, DAP5, and XIAP. In contrast, these IRESs were refractory to the ectopically expressed eIF4GI M-FAG/p76. Furthermore, our study provides in vivo evidence that the caspase-mediated removal of the C-terminal tail of DAP5/p97 relieves an inhibitory effect on the protein's ability to support cap-independent translation through the DAP5 IRES. Altogether, the data suggest that DAP5 is a caspase-activated translation factor that mediates translation through a repertoire of IRES elements, supporting the translation of apoptosis-related proteins.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Factores de Iniciación de Péptidos/fisiología , Ribosomas/metabolismo , Línea Celular , Factor 4G Eucariótico de Iniciación , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Factores de Iniciación de Péptidos/metabolismo , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA