Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(18): 3983-4002, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36917265

RESUMEN

The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Ácidos Nucleicos , Técnicas Electroquímicas/métodos , Electrodos , Biomarcadores , Técnicas Biosensibles/métodos
2.
Anal Chim Acta ; 1225: 340246, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36038242

RESUMEN

Protein-based diagnostics are the standard of care for screening and diagnosing a broad range of diseases and medical conditions. The current gold standard method for quantifying proteins in clinical specimens is the enzyme-linked immunosorbent assay (ELISA), which offers high analytical sensitivity, can process many samples at once, and is widely available in many diagnostic laboratories worldwide. However, running an ELISA is cumbersome, requiring multiple liquid handling and washing steps, and time-intensive (∼2 - 4 h per test). Here, we demonstrate a unique magneto-ELISA that utilizes dually labeled magnetic nanoparticles (DMPs) coated with horseradish peroxidase (HRP) and an HRP-conjugated detection antibody, enabling rapid immunomagnetic enrichment and signal amplification. For proof of concept, this assay was used to detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a malaria parasite biomarker, which exhibited a lower limit of detection of 2 pg mL-1 (33 fM) in human serum. Measurements of PfHRP2 in clinical blood samples from individuals with and without P. falciparum infection revealed that this magneto-ELISA offers a superior diagnostic accuracy compared to a commercial PfHRP2 ELISA kit. We also demonstrate the versatility of this platform by adapting it for the detection of SARS-CoV-2 nucleocapsid protein, which could be detected at concentrations as low as 8 pg mL-1 (174 fM) in human serum. In addition to its high analytical performance, this assay can be completed in 30 min, requires no specialized equipment, and is compatible with standard microplate readers and ELISA protocols, allowing it to integrate readily into current clinical practice.


Asunto(s)
COVID-19 , Malaria Falciparum , Nanopartículas , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Plasmodium falciparum , SARS-CoV-2
3.
Pediatr Nephrol ; 37(4): 735-744, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34009465

RESUMEN

Over the years, hyaluronic acid (HA) has emerged as an important molecule in nephrological and urological studies involving extracellular matrix (ECM) organization, inflammation, tissue regeneration, and viral sensing. During this time, many have noted the perplexing double-edged nature of the molecule, at times promoting pro-fibrotic events and at other times promoting anti-fibrotic events. Different molecular weights of HA can be attributed to these disparities, though most studies have yet to focus on this subtlety. With regard to the kidney, HA is induced in the initial response phase of injury and is subsequently decreased during disease progression of AKI, CKD, and diabetic nephropathy. These and other kidney diseases force patients, particularly pediatric patients, to face dialysis, surgical procedures, and ultimately, transplant. To summarize the current literature for researchers and pediatric nephrologists, this review aims to expound HA and elucidate its paradoxical effects in multiple kidney diseases using studies that emphasize HA molecular weight when available.


Asunto(s)
Nefropatías Diabéticas , Ácido Hialurónico , Niño , Nefropatías Diabéticas/patología , Fibrosis , Humanos , Ácido Hialurónico/efectos adversos , Riñón/patología , Diálisis Renal
4.
Front Cardiovasc Med ; 8: 701224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386532

RESUMEN

Children with acquired heart disease face significant health challenges, including a lifetime of strict medical management, multiple cardiac surgeries, and a high mortality risk. Though the presentation of these conditions is diverse, a unifying factor is the role of immune and inflammatory responses in their development and/or progression. For example, infectious agents have been linked to pediatric cardiovascular disease, leading to a large health burden that disproportionately affects low-income areas. Other implicated mechanisms include antibody targeting of cardiac proteins, infection of cardiac cells, and inflammation-mediated damage to cardiac structures. These changes can alter blood flow patterns, change extracellular matrix composition, and induce cardiac remodeling. Therefore, understanding the relationship between the immune system and cardiovascular disease can inform targeted diagnostic and treatment approaches. In this review, we discuss the current understanding of pediatric immune-associated cardiac diseases, challenges in the field, and areas of research with potential for clinical benefit.

5.
Front Cardiovasc Med ; 8: 701375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434978

RESUMEN

Congenital heart disease (CHD) poses a significant global health and economic burden-despite advances in treating CHD reducing the mortality risk, globally CHD accounts for approximately 300,000 deaths yearly. Children with CHD experience both acute and chronic cardiac complications, and though treatment options have improved, some remain extremely invasive. A challenge in addressing these morbidity and mortality risks is that little is known regarding the cause of many CHDs and current evidence suggests a multifactorial etiology. Some studies implicate an immune contribution to CHD development; however, the role of the immune system is not well-understood. Defining the role of the immune and inflammatory responses in CHD therefore holds promise in elucidating mechanisms underlying these disorders and improving upon current diagnostic and treatment options. In this review, we address the current knowledge coinciding CHDs with immune and inflammatory associations, emphasizing conditions where this understanding would provide clinical benefit, and challenges in studying these mechanisms.

6.
Front Cell Dev Biol ; 8: 636, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850791

RESUMEN

Scar formation is the typical endpoint of postnatal dermal wound healing, which affects more than 100 million individuals annually. Not only do scars cause a functional burden by reducing the biomechanical strength of skin at the site of injury, but they also significantly increase healthcare costs and impose psychosocial challenges. Though the mechanisms that dictate how dermal wounds heal are still not completely understood, they are regulated by extracellular matrix (ECM) remodeling, neovascularization, and inflammatory responses. The cytokine interleukin (IL)-10 has emerged as a key mediator of the pro- to anti-inflammatory transition that counters collagen deposition in scarring. In parallel, the high molecular weight (HMW) glycosaminoglycan hyaluronan (HA) is present in the ECM and acts in concert with IL-10 to block pro-inflammatory signals and attenuate fibrotic responses. Notably, high concentrations of both IL-10 and HMW HA are produced in early gestational fetal skin, which heals scarlessly. Since fibroblasts are responsible for collagen deposition, it is critical to determine how the concerted actions of IL-10 and HA drive their function to potentially control fibrogenesis. Beyond their independent actions, an auto-regulatory IL-10/HA axis may exist to modulate the magnitude of CD4+ effector T lymphocyte activation and enhance T regulatory cell function in order to reduce scarring. This review underscores the pathophysiological impact of the IL-10/HA axis as a multifaceted molecular mechanism to direct primary cell responders and regulators toward either regenerative dermal tissue repair or scarring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...