Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(2): e4885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147466

RESUMEN

Smurf1 and Smurf2 are two closely related member of the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase family and play important roles in the regulation of various cellular processes. Both were initially identified to regulate transforming growth factor-ß and bone morphogenetic protein signaling pathways through regulating Smad protein stability and are now implicated in various pathological processes. Generally, E3 ligases, of which over 800 exist in humans, are ideal targets for inhibition as they determine substrate specificity; however, there are few inhibitors with the ability to precisely target a particular E3 ligase of interest. In this work, we explored a panel of ubiquitin variants (UbVs) that were previously identified to bind Smurf1 or Smurf2. In vitro binding and ubiquitination assays identified a highly specific Smurf2 inhibitor, UbV S2.4, which was able to inhibit ligase activity with high potency in the low nanomolar range. Orthologous cellular assays further demonstrated high specificity of UbV S2.4 toward Smurf2 and no cross-reactivity toward Smurf1. Structural analysis of UbV S2.4 in complex with Smurf2 revealed its mechanism of inhibition was through targeting the E2 binding site. In summary, we investigated several protein-based inhibitors of Smurf1 and Smurf2 and identified a highly specific Smurf2 inhibitor that disrupts the E2-E3 protein interaction interface.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Sitios de Unión
2.
ACS Chem Biol ; 17(6): 1472-1484, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35613471

RESUMEN

A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes1) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes1 and superSrc-SH2 (sSrc1), another SH2 superbinder. We grafted the superbinder motifs from sFes1 and sSrc1 into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.


Asunto(s)
Proteoma , Dominios Homologos src , Humanos , Espectrometría de Masas , Fosfotirosina/análisis , Fosfotirosina/química , Fosfotirosina/metabolismo , Unión Proteica , Proteoma/metabolismo
3.
ACS Chem Biol ; 17(4): 941-956, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35385646

RESUMEN

Ubiquitin (Ub)-binding domains embedded in intracellular proteins act as readers of the complex Ub code and contribute to regulation of numerous eukaryotic processes. Ub-interacting motifs (UIMs) are short α-helical modular recognition elements whose role in controlling proteostasis and signal transduction has been poorly investigated. Moreover, impaired or aberrant activity of UIM-containing proteins has been implicated in numerous diseases, but targeting modular recognition elements in proteins remains a major challenge. To overcome this limitation, we developed Ub variants (UbVs) that bind to 42 UIMs in the human proteome with high affinity and specificity. Structural analysis of a UbV:UIM complex revealed the molecular determinants of enhanced affinity and specificity. Furthermore, we showed that a UbV targeting a UIM in the cancer-associated Ub-specific protease 28 potently inhibited catalytic activity. Our work demonstrates the versatility of UbVs to target short α-helical Ub receptors with high affinity and specificity. Moreover, the UbVs provide a toolkit to investigate the role of UIMs in regulating and transducing Ub signals and establish a general strategy for the systematic development of probes for Ub-binding domains.


Asunto(s)
Proteínas , Ubiquitina , Humanos , Unión Proteica , Proteínas/metabolismo , Ubiquitina/metabolismo
4.
Structure ; 27(4): 590-605.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30713027

RESUMEN

The multi-domain deubiquitinase USP15 regulates diverse eukaryotic processes and has been implicated in numerous diseases. We developed ubiquitin variants (UbVs) that targeted either the catalytic domain or each of three adaptor domains in USP15, including the N-terminal DUSP domain. We also designed a linear dimer (diUbV), which targeted the DUSP and catalytic domains, and exhibited enhanced specificity and more potent inhibition of catalytic activity than either UbV alone. In cells, the UbVs inhibited the deubiquitination of two USP15 substrates, SMURF2 and TRIM25, and the diUbV inhibited the effects of USP15 on the transforming growth factor ß pathway. Structural analyses revealed that three distinct UbVs bound to the catalytic domain and locked the active site in a closed, inactive conformation, and one UbV formed an unusual strand-swapped dimer and bound two DUSP domains simultaneously. These inhibitors will enable the study of USP15 function in oncology, neurology, immunology, and inflammation.


Asunto(s)
Factores de Transcripción/química , Factor de Crecimiento Transformador beta1/química , Proteínas de Motivos Tripartitos/química , Ubiquitina-Proteína Ligasas/química , Proteasas Ubiquitina-Específicas/química , Ubiquitina/química , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
5.
Biochemistry ; 51(1): 1-3, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22191472

RESUMEN

HopPmaL is a member of the HopAB family of type III effectors present in the phytopathogen Pseudomonas syringae. Using both X-ray crystallography and solution nuclear magnetic resonance, we demonstrate that HopPmaL contains two structurally homologous yet functionally distinct domains. The N-terminal domain corresponds to the previously described Pto-binding domain, while the previously uncharacterised C-terminal domain spans residues 308-385. While structurally similar, these domains do not share significant sequence similarity and most importantly demonstrate significant differences in key residues involved in host protein recognition, suggesting that each of them targets a different host protein.


Asunto(s)
Proteínas Bacterianas/química , Pseudomonas syringae/química , Pseudomonas syringae/patogenicidad , Proteínas Bacterianas/fisiología , Secuencia Conservada , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Solanum lycopersicum/microbiología , Familia de Multigenes , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Unión Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Alineación de Secuencia
6.
PLoS Pathog ; 3(3): e48, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17397263

RESUMEN

The Pseudomonas syringae type III effector protein avirulence protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein (resistance to Pseudomonas maculicula protein 1 [RPM1]-interacting protein). RIN4 is a regulator of basal host defense responses. Targeting of RIN4 by AvrB is recognized by the host RPM1 nucleotide-binding leucine-rich repeat disease resistance protein, leading to accelerated defense responses, cessation of pathogen growth, and hypersensitive host cell death at the infection site. We determined the structure of AvrB complexed with an AvrB-binding fragment of RIN4 at 2.3 A resolution. We also determined the structure of AvrB in complex with adenosine diphosphate bound in a binding pocket adjacent to the RIN4 binding domain. AvrB residues important for RIN4 interaction are required for full RPM1 activation. AvrB residues that contact adenosine diphosphate are also required for initiation of RPM1 function. Nucleotide-binding residues of AvrB are also required for its phosphorylation by an unknown Arabidopsis protein(s). We conclude that AvrB is activated inside the host cell by nucleotide binding and subsequent phosphorylation and, independently, interacts with RIN4. Our data suggest that activated AvrB, bound to RIN4, is indirectly recognized by RPM1 to initiate plant immune system function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , ADN de Plantas/metabolismo , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Innata/inmunología , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Fosforilación , Pseudomonas syringae/genética
7.
Curr Opin Plant Biol ; 9(4): 376-82, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16713730

RESUMEN

Bacterial pathogens have co-evolved with their hosts in their ongoing quest for advantage in the resulting interaction. These intimate associations have resulted in remarkable adaptations of prokaryotic virulence proteins and their eukaryotic molecular targets. An important strategy used by microbial pathogens of animals to manipulate host cellular functions is structural mimicry of eukaryotic proteins. Recent evidence demonstrates that plant pathogens also use structural mimicry of host factors as a virulence strategy. Nearly all virulence proteins from phytopathogenic bacteria have eluded functional annotation on the basis of primary amino-acid sequence. Recent efforts to determine their three-dimensional structures are, however, revealing important clues about the mechanisms of bacterial virulence in plants.


Asunto(s)
Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/química , Virulencia
8.
Proc Natl Acad Sci U S A ; 102(18): 6496-501, 2005 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15845764

RESUMEN

Plant pathogenic Pseudomonas syringae deliver type III effector proteins into the host cell, where they function to manipulate host defense and metabolism to benefit the extracellular bacterial colony. The activity of these virulence factors can be monitored by plant disease resistance proteins deployed to "guard" the targeted host proteins. The Arabidopsis RIN4 protein is targeted by three different type III effectors. Specific manipulation of RIN4 by each of them leads to activation of either the RPM1 or RPS2 disease resistance proteins. The type III effector AvrRpt2 is a cysteine protease that is autoprocessed inside the host cell where it activates RPS2 by causing RIN4 disappearance. RIN4 contains two sites related to the AvrRpt2 cleavage site (RCS1 and RCS2). We demonstrate that AvrRpt2-dependent cleavage of RIN4 at RCS2 is functionally critical in vivo. This event leads to proteasome-mediated elimination of all but a membrane-embedded approximately 6.4-kDa C-terminal fragment of RIN4. One or more of three consecutive cysteines in this C-terminal fragment are required for RIN4 localization; these are likely to be palmitoylation and/or prenylation sites. AvrRpt2-dependent cleavage at RCS2, and release of the remainder of RIN4 from the membrane, consequently prevents RPM1 activation by AvrRpm1 or AvrB. RCS2 is contained within the smallest tested fragment of RIN4 that binds AvrB in vitro. Thus, at least two bacterial virulence factors target the same domain of RIN4, a approximately 30-aa plant-specific signature sequence found in a small Arabidopsis protein family that may be additional targets for these bacterial virulence factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Inmunidad Innata , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Palmitatos , Plantas Modificadas Genéticamente , Pseudomonas syringae/patogenicidad , Factores de Virulencia/metabolismo
9.
J Biol Chem ; 280(9): 8407-15, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15574431

RESUMEN

CIB1 (CIB) is an EF-hand-containing protein that binds multiple effector proteins, including the platelet alphaIIbbeta3 integrin and several serine/threonine kinases and potentially modulates their function. The crystal structure for Ca(2+)-bound CIB1 has been determined at 2.0 A resolution and reveals a compact alpha-helical protein containing four EF-hands, the last two of which bind calcium ions in the standard fashion seen in many other EF-hand proteins. CIB1 shares high structural similarity with calcineurin B and the neuronal calcium sensor (NCS) family of EF-hand-containing proteins. Most importantly, like calcineurin B and NCS proteins, which possess a large hydrophobic pocket necessary for ligand binding, CIB1 contains a hydrophobic pocket that has been implicated in ligand binding by previous mutational analysis. However, unlike several NCS proteins, Ca(2+)-bound CIB1 is largely monomeric whether bound to a relevant peptide ligand or ligand-free. Differences in structure, oligomeric state, and phylogeny define a new family of CIB1-related proteins that extends from arthropods to humans.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/fisiología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Secuencia de Aminoácidos , Calcineurina/química , Calcio/química , Calcio/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X , Citoplasma/metabolismo , Electrones , Escherichia coli/metabolismo , Humanos , Iones , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Neuronas/metabolismo , Péptidos/química , Filogenia , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal , Ultracentrifugación , Rayos X
10.
Structure ; 12(9): 1669-81, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15341731

RESUMEN

The avrPphF locus from Pseudomonas syringae pv. phaseolicola, the causative agent of bean halo-blight disease, encodes proteins which either enhance virulence on susceptible hosts or elicit defense responses on hosts carrying the R1 resistance gene. Here we present the crystal structures of the two proteins from the avrPphF operon. The structure of AvrPphF ORF1 is strikingly reminiscent of type III chaperones from bacterial pathogens of animals, indicating structural conservation of these specialized chaperones, despite high sequence divergence. The AvrPphF ORF2 effector adopts a novel "mushroom"-like structure containing "head" and "stalk" subdomains. The head subdomain possesses limited structural homology to the catalytic domain of bacterial ADP-ribosyltransferases (ADP-RTs), though no ADP-RT activity was detected for AvrPphF ORF2 in standard assays. Nonetheless, this structural similarity identified two clusters of conserved surface-exposed residues important for both virulence mediated by AvrPphF ORF2 and recognition of this effector by bean plants expressing the R1 resistance gene.


Asunto(s)
Proteínas Bacterianas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Estructura Terciaria de Proteína , Pseudomonas syringae/patogenicidad , ADP Ribosa Transferasas/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Fabaceae/microbiología , Modelos Moleculares , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Operón , Pseudomonas syringae/química , Pseudomonas syringae/genética , Alineación de Secuencia
11.
J Biol Chem ; 278(23): 21099-104, 2003 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12657629

RESUMEN

Increasing evidence links the activation of Rho family GTPases to the stimulation of lipid hydrolysis catalyzed by phospholipase C (PLC)-beta isozymes. To better define this relationship, members of a library of recombinant Rho GTPases were screened for their capacity to directly engage various purified PLC-beta isozymes. Of the 17 tested members of the Rho family, only the active isoforms of Rac (Rac1, Rac2, and Rac3) both stimulate PLC-beta activity in vivo and bind PLC-beta2 and PLC-beta3, but not PLC-beta1, in vitro. Furthermore, the recognition site for Rac GTPases was localized to the pleckstrin homology (PH) domain of PLC-beta2, and this PH domain is fully sufficient to selectively interact with the active versions of the Rac GTPases, but not with other similar Rho GTPases. Together, these findings present a quantitative evaluation of the direct interactions between Rac GTPases and PLC-beta isozymes and define a novel role for the PH domain of PLC-beta2 as a putative effector site for Rac GTPases.


Asunto(s)
Proteínas Sanguíneas/genética , Isoenzimas/química , Isoenzimas/genética , Fosfoproteínas/genética , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/genética , Proteína de Unión al GTP rac1/metabolismo , Animales , Técnicas Biosensibles , Células COS , ADN Complementario , Activación Enzimática , Humanos , Isoenzimas/metabolismo , Fosfolipasa C beta , Unión Proteica , Estructura Terciaria de Proteína , Fosfolipasas de Tipo C/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína RCA2 de Unión a GTP
12.
Pharm Res ; 19(9): 1302-9, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12403066

RESUMEN

PURPOSE: The intracellular delivery of functionally active protein represents an important emerging strategy for laboratory investigation and therapeutic applications. Although a number of promising approaches for protein delivery have been developed, thus far there has been no attempt to compare the merits of the various deliver technologies. This issue is addressed in the current study. METHODS: In this study we utilize a sensitive luciferase reporter gene assay to provide unambiguous and quantitative evaluation of several strategies for the intracellular delivery of a biologically active protein comprised of the Gal4 DNA binding domain and the VP16 transactivating domain. RESULTS: Both a cationic lipid supramolecular complex and a poly meric complex were able to effectively deliver the chimeric transcription factor to cultured cells. In addition, protein chimeras containing the Tat cell penetrating peptide, but not those containing the VP22 peptide, were somewhat effective in delivery. CONCLUSIONS: Both supramolecular protein-carrier complexes and protein chimeras with certain cell penetrating peptides can support intracellular delivery of proteins. In the cell culture setting the supramolecular complexes are more effective, but their large size may present problems for in vivo applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Líquido Intracelular/efectos de los fármacos , Proteínas/administración & dosificación , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Humanos , Plásmidos/administración & dosificación , Plásmidos/genética , Proteínas/genética , Transfección/métodos
13.
Nat Struct Biol ; 9(1): 32-6, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11753430

RESUMEN

GTP-bound subunits of the Gq family of G alpha subunits directly activate phospholipase C-beta (PLC-beta) isozymes to produce the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-betas are GTPase activating proteins (GAPs) that also promote the formation of GDP-bound, inactive G beta subunits. Both phospholipase activation by G alpha-GTP subunits and GAP activity require a C-terminal region unique to PLC-beta isozymes. The crystal structure of the C-terminal region from an avian PLC-beta, determined at 2.4 A resolution, reveals a novel fold composed almost entirely of three long helices forming a coiled-coil that dimerizes along its long axis in an antiparallel orientation. The dimer interface is extensive ( approximately 3,200 A(2)), and, based on gel exclusion chromatography, full length PLC-betas are dimeric, indicating that PLC-betas likely function as dimers. Sequence conservation, mutational data and molecular modeling show that an electrostatically positive surface of the dimer contains the major determinants for binding G beta q. Effector dimerization, as highlighted by PLC-betas, provides a viable mechanism for regulating signaling cascades linked to heterotrimeric G proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Pavos , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Proteínas de Unión al GTP Heterotriméricas/química , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Fosfolipasa C beta , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...