Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Acoust Soc Am ; 156(1): 65-80, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949286

RESUMEN

Environment estimation is a challenging task in reverberant settings such as the underwater and indoor acoustic domains. The locations of reflective boundaries, for example, can be estimated using acoustic echoes and leveraged for subsequent, more accurate localization and mapping. Current boundary estimation methods are constrained to high signal-to-noise ratios or are customized to specific environments. Existing methods also often require a correct assignment of echoes to boundaries, which is difficult if spurious echoes are detected. To evade these limitations, a convolutional neural network (NN) method is developed for robust two-dimensional boundary estimation, given known emitter and receiver locations. A Hough transform-inspired algorithm is leveraged to transform echo times of arrival into images, which are amenable to multi-resolution regression by NNs. The same architecture is trained on transform images of different resolutions to obtain diverse NNs, deployed sequentially for increasingly refined boundary estimation. A correct echo labeling solution is not required, and the method is robust to reverberation. The proposed method is tested in simulation and for real data from a water tank, where it outperforms state-of-the-art alternatives. These results are encouraging for the future development of data-driven three-dimensional environment estimation with high practical value in underwater acoustic detection and tracking.

2.
Water Res ; 260: 121952, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38906083

RESUMEN

Antimicrobial resistance (AMR) is a global public health threat, and the environment has been identified as an important reservoir for resistant microorganisms and genes. Storm overflows (SOs) discharge wastewater and stormwater, and are found throughout many wastewater networks. While there are no data currently showing the impact of SOs on the environment with respect to AMR in the UK, there is a small but growing body of evidence globally highlighting the potential role of SOs on environmental AMR. This review aims to provide an overview of the current state of SOs, describe global data investigating the impact of SOs on environmental AMR, and discuss the implications of SOs regarding AMR and human health. In addition, the complexities of studying the effects of SOs are discussed and a set of priority research questions and policy interventions to tackle a potentially emerging threat to public health are presented.

3.
PLoS One ; 19(5): e0303529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38809825

RESUMEN

Wastewater-based epidemiology (WBE) has emerged as an effective environmental surveillance tool for predicting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease outbreaks in high-income countries (HICs) with centralized sewage infrastructure. However, few studies have applied WBE alongside epidemic disease modelling to estimate the prevalence of SARS-CoV-2 in low-resource settings. This study aimed to explore the feasibility of collecting untreated wastewater samples from rural and urban catchment areas of Nagpur district, to detect and quantify SARS-CoV-2 using real-time qPCR, to compare geographic differences in viral loads, and to integrate the wastewater data into a modified Susceptible-Exposed-Infectious-Confirmed Positives-Recovered (SEIPR) model. Of the 983 wastewater samples analyzed for SARS-CoV-2 RNA, we detected significantly higher sample positivity rates, 43.7% (95% confidence interval (CI) 40.1, 47.4) and 30.4% (95% CI 24.66, 36.66), and higher viral loads for the urban compared with rural samples, respectively. The Basic reproductive number, R0, positively correlated with population density and negatively correlated with humidity, a proxy for rainfall and dilution of waste in the sewers. The SEIPR model estimated the rate of unreported coronavirus disease 2019 (COVID-19) cases at the start of the wave as 13.97 [95% CI (10.17, 17.0)] times that of confirmed cases, representing a material difference in cases and healthcare resource burden. Wastewater surveillance might prove to be a more reliable way to prepare for surges in COVID-19 cases during future waves for authorities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , India/epidemiología , COVID-19/epidemiología , COVID-19/virología , COVID-19/diagnóstico , Humanos , Aguas Residuales/virología , SARS-CoV-2/aislamiento & purificación , Carga Viral , Pandemias , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas del Alcantarillado/virología
5.
FEMS Microbes ; 5: xtae007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544682

RESUMEN

Wastewater-based epidemiology is now widely used in many countries for the routine monitoring of SARS-CoV-2 and other viruses at a community level. However, efficient sample processing technologies are still under investigation. In this study, we compared the performance of the novel Nanotrap® Microbiome Particles (NMP) concentration method to the commonly used polyethylene glycol (PEG) precipitation method for concentrating viruses from wastewater and their subsequent quantification and sequencing. For this, we first spiked wastewater with SARS-CoV-2, influenza and measles viruses and norovirus and found that the NMP method recovered 0.4%-21% of them depending on virus type, providing consistent and reproducible results. Using the NMP and PEG methods, we monitored SARS-CoV-2, influenza A and B viruses, RSV, enteroviruses and norovirus GI and GII and crAssphage in wastewater using quantitative PCR (qPCR)-based methods and next-generation sequencing. Good viral recoveries were observed for highly abundant viruses using both methods; however, PEG precipitation was more successful in the recovery of low-abundance viruses present in wastewater. Furthermore, samples processed with PEG precipitation were more successfully sequenced for SARS-CoV-2 than those processed with the NMP method. Virus recoveries were enhanced by high sample volumes when PEG precipitation was applied. Overall, our results suggest that the NMP concentration method is a rapid and easy virus concentration method for viral targets that are abundant in wastewater, whereas PEG precipitation may be more suited to the recovery and analysis of low-abundance viruses and for next generation sequencing.

7.
iScience ; 27(3): 109043, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375225

RESUMEN

This study investigated the potential of using SARS-CoV-2 viral concentrations in dust as an additional surveillance tool for early detection and monitoring of COVID-19 transmission. Dust samples were collected from 8 public locations in 16 districts of Bangkok, Thailand, from June to August 2021. SARS-CoV-2 RNA concentrations in dust were quantified, and their correlation with community case incidence was assessed. Our findings revealed a positive correlation between viral concentrations detected in dust and the relative risk of COVID-19. The highest risk was observed with no delay (0-day lag), and this risk gradually decreased as the lag time increased. We observed an overall decline in viral concentrations in public places during lockdown, closely associated with reduced human mobility. The effective reproduction number for COVID-19 transmission remained above one throughout the study period, suggesting that transmission may persist in locations beyond public areas even after the lockdown measures were in place.

8.
JPGN Rep ; 4(4): e384, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034444

RESUMEN

Currently, there exists a scarcity of suitable nutrition training resources for the primary care physician (PCP) and a paucity of educational materials for pediatric residency programs. Barriers to nutritional education include: a lack of well-defined competencies, a dearth of centralized resources for nutritional education, and a reliance on didactic teaching methodology. Because PCPs often cite a lack of confidence as a primary reason for not providing nutritional counseling, we created an interactive 3-pronged nutritional curriculum for pediatric residents with the aim of increasing their confidence to provide nutritional counseling to patients. This curriculum included an in-person visit to a local supermarket, an online, interactive case during the resident's continuity clinic, and an interactive lecture. There was a statistically significant change in pediatric residents' confidence to manage issues of outpatient nutrition management. We find this particularly relevant as increasing physician confidence is key to increasing nutritional counseling in a clinical setting.

9.
Environ Sci Pollut Res Int ; 30(59): 123785-123795, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37989946

RESUMEN

Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.


Asunto(s)
Virus , Aguas Residuales , SARS-CoV-2 , Aguas del Alcantarillado , Monitoreo Epidemiológico Basado en Aguas Residuales
11.
J Surg Educ ; 80(12): 1741-1744, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37723013

RESUMEN

OBJECTIVE: Efforts to improve physician well-being have focused on gratitude, which predicts health and happiness. Despite reported benefits, expressions of gratitude in healthcare can seem infrequent. Here, we describe Gratitude-Grams, an intervention to cultivate expressions of gratitude throughout a department. METHODS/APPROACH: Piloted in our Department of Surgery and adopted by others, Gratitude-Grams employs a web-based platform (Qualtrics). Program feedback was solicited during teaching conferences using an anonymous department survey. RESULTS: Gratitude-Grams streamlines and encourages expressions of gratitude while minimizing maintenance, cost, and time. The platform has been highly utilized and well-received in our Department of Surgery. CONCLUSION: Expressing and receiving gratitude has been shown to be critical for well-being. Gratitude-Grams is a highly utilized, simple, and attainable system to support expressions of gratitude and is ready for rapid implementation.


Asunto(s)
Médicos , Humanos , Encuestas y Cuestionarios
13.
Microbiol Resour Announc ; 12(9): e0048123, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37578246

RESUMEN

Here, we provide the genome sequence of a Leclercia adecarboxylata isolated from a screen of an environmental bacterial isolate library for resistance to the plant flavonoid berberine. We detected the colistin resistance gene mcr-9, located on an IncFII(pECLA) plasmid.

14.
Sci Adv ; 9(29): eadh8839, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478175

RESUMEN

Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, Aspergillus fumigatus, that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant A. fumigatus infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods. This suggests a high degree of atmospheric mixing resulting in an estimated per capita cumulative annual exposure of 21 days (±2.6). Because of the ubiquity of this measured exposure, it is imperative that we determine sources of azole-resistant A. fumigatus to reduce treatment failure in patients with aspergillosis.


Asunto(s)
Aspergilosis , Ciencia Ciudadana , Humanos , Aspergillus fumigatus/genética , Farmacorresistencia Fúngica/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Azoles/farmacología
16.
Ann Surg ; 278(5): e912-e921, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389552

RESUMEN

OBJECTIVE: To compare conventional low-temperature storage of transplant donor livers [static cold storage (SCS)] with storage of the organs at physiological body temperature [normothermic machine perfusion (NMP)]. BACKGROUND: The high success rate of liver transplantation is constrained by the shortage of transplantable organs (eg, waiting list mortality >20% in many centers). NMP maintains the liver in a functioning state to improve preservation quality and enable testing of the organ before transplantation. This is of greatest potential value with organs from brain-dead donor organs (DBD) with risk factors (age and comorbidities), and those from donors declared dead by cardiovascular criteria (donation after circulatory death). METHODS: Three hundred eighty-three donor organs were randomized by 15 US liver transplant centers to undergo NMP (n = 192) or SCS (n = 191). Two hundred sixty-six donor livers proceeded to transplantation (NMP: n = 136; SCS: n = 130). The primary endpoint of the study was "early allograft dysfunction" (EAD), a marker of early posttransplant liver injury and function. RESULTS: The difference in the incidence of EAD did not achieve significance, with 20.6% (NMP) versus 23.7% (SCS). Using exploratory, "as-treated" rather than "intent-to-treat," subgroup analyses, there was a greater effect size in donation after circulatory death donor livers (22.8% NMP vs 44.6% SCS) and in organs in the highest risk quartile by donor risk (19.2% NMP vs 33.3% SCS). The incidence of acute cardiovascular decompensation at organ reperfusion, "postreperfusion syndrome," as a secondary outcome was reduced in the NMP arm (5.9% vs 14.6%). CONCLUSIONS: NMP did not lower EAD, perhaps related to the inclusion of lower-risk liver donors, as higher-risk donor livers seemed to benefit more. The technology is safe in standard organ recovery and seems to have the greatest benefit for marginal donors.

17.
iScience ; 26(7): 107019, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37351501

RESUMEN

Equitable SARS-CoV-2 surveillance in low-resource communities lacking centralized sewers is critical as wastewater-based epidemiology (WBE) progresses. However, large-scale studies on SARS-CoV-2 detection in wastewater from low-and middle-income countries is limited because of economic and technical reasons. In this study, wastewater samples were collected twice a month from 186 urban and rural subdistricts in nine provinces of Thailand mostly having decentralized and non-sewered sanitation infrastructure and analyzed for SARS-CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2 RNA concentration was used to estimate the real-time incidence and time-varying effective reproduction number (Re). Results showed an increase in SARS-CoV-2 RNA concentrations in wastewater from urban and rural areas 14-20 days earlier than infected individuals were officially reported. It also showed that community/food markets were "hot spots" for infected people. This approach offers an opportunity for early detection of transmission surges, allowing preparedness and potentially mitigating significant outbreaks at both spatial and temporal scales.

18.
Lancet Microbe ; 4(7): e534-e543, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207684

RESUMEN

BACKGROUND: Low-income countries have high morbidity and mortality from drug-resistant infections, especially from enteric bacteria such as Escherichia coli. In these settings, sanitation infrastructure is of variable and often inadequate quality, creating risks of extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales transmission. We aimed to describe the prevalence, distribution, and risks of ESBL-producing Enterobacterales colonisation in sub-Saharan Africa using a One Health approach. METHODS: Between April 29, 2019, and Dec 3, 2020, we recruited 300 households in Malawi for this longitudinal cohort study: 100 each in urban, peri-urban, and rural settings. All households underwent a baseline visit and 195 were selected for longitudinal follow-up, comprising up to three additional visits over a 6 month period. Data on human health, antibiotic usage, health-seeking behaviours, structural and behavioural environmental health practices, and animal husbandry were captured alongside human, animal, and environmental samples. Microbiological processing determined the presence of ESBL-producing E coli and Klebsiella pneumoniae, and hierarchical logistic regression was performed to evaluate the risks of human ESBL-producing Enterobacterales colonisation. FINDINGS: A paucity of environmental health infrastructure and materials for safe sanitation was identified across all sites. A total of 11 975 samples were cultured, and ESBL-producing Enterobacterales were isolated from 1190 (41·8%) of 2845 samples of human stool, 290 (29·8%) of 973 samples of animal stool, 339 (66·2%) of 512 samples of river water, and 138 (46·0%) of 300 samples of drain water. Multivariable models illustrated that human ESBL-producing E coli colonisation was associated with the wet season (adjusted odds ratio 1·66, 95% credible interval 1·38-2·00), living in urban areas (2·01, 1·26-3·24), advanced age (1·14, 1·05-1·25), and living in households where animals were observed interacting with food (1·62, 1·17-2·28) or kept inside (1·58, 1·00-2·43). Human ESBL-producing K pneumoniae colonisation was associated with the wet season (2·12, 1·63-2·76). INTERPRETATION: There are extremely high levels of ESBL-producing Enterobacterales colonisation in humans and animals and extensive contamination of the wider environment in southern Malawi. Urbanisation and seasonality are key risks for ESBL-producing Enterobacterales colonisation, probably reflecting environmental drivers. Without adequate efforts to improve environmental health, ESBL-producing Enterobacterales transmission is likely to persist in this setting. FUNDING: Medical Research Council, National Institute for Health and Care Research, and Wellcome Trust. TRANSLATION: For the Chichewa translation of the abstract see Supplementary Materials section.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Infecciones por Klebsiella , Salud Única , Animales , Humanos , Escherichia coli , Klebsiella pneumoniae , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Estudios Longitudinales , beta-Lactamasas , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Estudios de Cohortes
19.
PLoS One ; 18(5): e0286259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252922

RESUMEN

BACKGROUND: Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS: A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS: We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS: Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Aguas Residuales , Salud Pública , Pandemias , Monitoreo Epidemiológico Basado en Aguas Residuales , Inglaterra/epidemiología , ARN Viral
20.
Lancet Reg Health Southeast Asia ; 14: 100205, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37193348

RESUMEN

Background: The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods: A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings: This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation: RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding: UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...