Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Mol Biol ; 112(1-2): 1-18, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37067671

RESUMEN

Various plant development activities and stress responses are tightly regulated by various microRNAs (miRNA) and their target genes, or transcription factors in a spatiotemporal manner. Here, to exemplify how flowering-associated regulatory miRNAs synchronize their expression dynamics during floral and fiber development in cotton, constitutive expression diminution transgenic lines of auxin-signaling regulatory Gh-miR167 (35S-MIM167) were developed through target mimicry approach. 'Moderate' (58% to 80%)- and 'high' (> 80%)-Gh-miR167 diminution mimic lines showed dosage-dependent developmental deformities in anther development, pollen maturation, and fruit (= boll) formation. Cross pollination of 'moderate' 35S-MIM167 mimic lines with wild type (WT) plant partially restored boll formation and emergence of fiber initials on the ovule surface. Gh-miR167 diminution favored organ-specific transcription biases in miR159, miR166 as well as miR160, miR164, and miR172 along with their target genes during anther and petal development, respectively. Similarly, accumulative effect of percent Gh-miR167 diminution, cross regulation of its target ARF6/8 genes, and temporal mis-expression of hormone signaling- and flavonoid biosynthesis-associated regulatory miRNAs at early fiber initiation stage caused irregular fiber formation. Spatial and temporal transcription proportions of regulatory miRNAs were also found crucial for the execution of hormone- and flavonoid-dependent progression of floral and fiber development. These observations discover how assorted regulatory genetic circuits get organized in response to Gh-miR167 diminution and converge upon ensuing episodes of floral and fiber development in cotton.


Asunto(s)
Gossypium , MicroARNs , Gossypium/metabolismo , MicroARNs/metabolismo , Flores , Desarrollo de la Planta , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fibra de Algodón
2.
Biotechnol Lett ; 43(9): 1845-1867, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34165641

RESUMEN

OBJECTIVE: Mouse infection models are frequently used to study the host-pathogen interaction studies. However, due to several constraints, there is an urgent need for a simple, rapid, easy to handle, inexpensive, and ethically acceptable in vivo model system for studying the virulence of enteropathogens. Thus, the present study was performed to develop the larvae of Helicoverpa armigera as a rapid-inexpensive in vivo model system to evaluate the effect of Yersinia enterocolitica strain 8081 on its midgut via a label-free proteomic approach. RESULTS: Helicoverpa armigera larvae fed with Yersinia enterocolitica strain 8081 manifested significant reduction in body weight and damage in midgut. On performing label-free proteomic study, secretory systems, putative hemolysin, and two-component system emerged as the main pathogenic proteins. Further, proteome comparison between control and Yersinia added diet-fed (YADF) insects revealed altered cytoskeletal proteins in response to increased melanization (via a prophenoloxidase cascade) and free radical generation. In concurrence, FTIR-spectroscopy, and histopathological and biochemical analysis confirmed gut damage in YADF insects. Finally, the proteome data suggests that the mechanism of infection and the host response in Y. enterocolitica-H. armigera system mimics Yersinia-mammalian gut interactions. CONCLUSIONS: All data from current study collectively suggest that H. armigera larva can be considered as a potential in vivo model system for studying the enteropathogenic infection by Y. enterocolitica strain 8081.


Asunto(s)
Lepidópteros/microbiología , Mapas de Interacción de Proteínas , Yersiniosis/metabolismo , Yersinia enterocolitica/patogenicidad , Animales , Peso Corporal , Modelos Animales de Enfermedad , Proteínas Hemolisinas/metabolismo , Proteínas de Insectos/metabolismo , Larva/microbiología , Proteómica , Espectroscopía Infrarroja por Transformada de Fourier , Yersiniosis/microbiología
3.
Biotechnol Lett ; 42(11): 2189-2210, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32472187

RESUMEN

OBJECTIVE: Earlier, we have found that the enteropathogenic Yersinia enterocolitica have evolved the survival mechanisms that regulate the expression of laccase-encoding genes in the gut. The present study aims to characterize the purified recombinant laccase from Y. enterocolitica strain 8081 biovar 1B and understand its effect on the midgut of cotton bollworm, Helicoverpa armigera (Hübner) larvae. RESULTS: The recombinant laccase protein showed high purity fold and low molecular mass (~ 43 kDa). H. armigera larvae fed with laccase protein showed a significant decrease in body weight and damage in the midgut. Further, transmission electron microscopy (TEM) studies revealed the negative effect of laccase protein on trachea, malpighian tubules, and villi of the insect. The proteome comparison between control and laccase-fed larvae of cotton bollworm showed significant expression of proteolytic enzymes, oxidoreductases, cytoskeletal proteins, ribosomal proteins; and proteins for citrate (TCA cycle) cycle, glycolysis, stress response, cell redox homeostasis, xenobiotic degradation, and insect defence. Moreover, it also resulted in the reduction of antioxidants, increased melanization (insect innate immune response), and enhanced free radical generation. CONCLUSIONS: All these data collectively suggest that H. armigera (Hübner) larvae can be used to study the effect of microbes and their metabolites on the host physiology, anatomy, and survival.


Asunto(s)
Proteínas de Insectos/metabolismo , Lacasa/toxicidad , Lepidópteros/crecimiento & desarrollo , Proteómica/métodos , Yersinia enterocolitica/enzimología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Peso Corporal/efectos de los fármacos , Clonación Molecular , Tracto Gastrointestinal/diagnóstico por imagen , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/efectos de los fármacos , Lacasa/genética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Lepidópteros/efectos de los fármacos , Microscopía Electrónica de Transmisión , Peso Molecular , Yersinia enterocolitica/genética
4.
Plant Cell Environ ; 40(10): 2109-2120, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28643846

RESUMEN

Differential accumulation of plant defence metabolites has been suggested to have important ecological consequence in the context of plant-insect interactions. Feeding of generalist pests on Brassica juncea showed a distinct pattern with selective exclusion of leaf margins which are high in glucosinolates. Molecular basis of this differential accumulation of glucosinolates could be explained based on differential expression profile of BjuMYB28 homologues, the major biosynthetic regulators of aliphatic glucosinolates, as evident from quantitative real-time PCR and promoter:GUS fusion studies in allotetraploid B. juncea. Constitutive overexpression of selected BjuMYB28 homologues enhanced accumulation of aliphatic glucosinolates in B. juncea. Performance of two generalist pests, Helicoverpa armigera and Spodoptera litura larvae, on transgenic B. juncea plants were poor compared to wild-type plants in a no-choice experiment. Correlation coefficient analysis suggested that weight gain of H. armigera larvae was negatively correlated with gluconapin (GNA) and glucobrassicanapin (GBN), whereas that of S. litura larvae was negatively correlated with GNA, GBN and sinigrin (SIN). Our study explains the significance and possible molecular basis of differential distribution of glucosinolates in B. juncea leaves and shows the potential of overexpressing BjuMYB28 for enhanced resistance of Brassica crops against the tested generalist pests.


Asunto(s)
Vías Biosintéticas , Conducta Alimentaria , Glucosinolatos/biosíntesis , Insectos/fisiología , Planta de la Mostaza/parasitología , Animales , Bioensayo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza/genética , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Plantas Modificadas Genéticamente , Spodoptera
5.
PLoS One ; 11(7): e0158603, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391960

RESUMEN

Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp), which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Endotoxinas/metabolismo , Gossypium/metabolismo , Proteínas Hemolisinas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plastidios/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Southern Blotting , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genética
6.
J Biosci ; 36(2): 363-76, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21654089

RESUMEN

High levels of expression of the cry1Ac gene from Bacillus thuringiensis cannot be routinely achieved in transgenic plants despite modifications made in the gene to improve its expression. This has been attributed to the instability of the transcript in a few reports. In the present study, based on the genetic transformation of cotton and tobacco, we show that the expression of the Cry1Ac endotoxin has detrimental effects on both the in vitro and in vivo growth and development of transgenic plants. A number of experiments on developing transgenics in cotton with different versions of cry1Ac gene showed that the majority of the plants did not express any Cry1Ac protein. Based on Southern blot analysis, it was also observed that a substantial number of lines did not contain the cry1Ac gene cassette although they contained the marker gene nptII. More significantly, all the lines that showed appreciable levels of expression were found to be phenotypically abnormal. Experiments on transformation of tobacco with different constructs expressing the cry1Ac gene showed that in vitro regeneration was inhibited by the encoded protein. Further, out of a total of 145 independent events generated with the different cry1Ac gene constructs in tobacco, only 21 showed expression of the Cry1Ac protein, confirming observations made in cotton that regenerants that express high levels of the Cry1Ac protein are selected against during regeneration of transformed events. This problem was circumvented by targeting the Cry1Ac protein to the chloroplast, which also significantly improved the expression of the protein.


Asunto(s)
Proteínas Bacterianas/genética , Endotoxinas/genética , Expresión Génica , Gossypium/genética , Proteínas Hemolisinas/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Recombinantes/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Endotoxinas/metabolismo , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Proteínas Hemolisinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Regeneración/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...