Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 88(3): 595-614, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37578877

RESUMEN

Arsenic contamination in groundwater due to natural or anthropogenic sources is responsible for carcinogenic and non-carcinogenic risks to humans and the ecosystem. The physicochemical properties of groundwater in the study area were determined in the laboratory using the samples collected across the Varanasi region of Uttar Pradesh, India. This paper analyses the physicochemical properties of water using machine learning, descriptive statistics, geostatistical and spatial analysis. Pearson correlation was used for feature selection and highly correlated features were selected for model creation. Hydrochemical facies of the study area were analyzed and the hyperparameters of machine learning models, i.e., multilayer perceptron, random forest (RF), naïve Bayes, and decision tree were optimized before training and testing the groundwater samples as high (1) or low (0) arsenic contamination levels based on the WHO 10 µg/L guideline value. The overall performance of the models was compared based on accuracy, sensitivity, and specificity value. Among all models, the RF algorithm outclasses other classifiers, as it has a high accuracy of 92.30%, a sensitivity of 100%, and a specificity of 75%. The accuracy result was compared to prior research, and the machine learning model may be used to continually monitor the amount of arsenic pollution in groundwater.

2.
Expert Opin Drug Saf ; 20(11): 1443-1450, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34259127

RESUMEN

BACKGROUND: D-penicillamine (D-pen) is a copper-chelating drug and has immune-modulatory properties. D-pen is used to treat rheumatoid arthritis, Wilson's disease, and kidney stones (cystinuria). However, associated adverse events (AEs) of D-pen treatment are frequent and often serious. Therefore, a comprehensive assessment of the safety profile of D-pen is urgently needed. RESEARCH DESIGN AND METHODS: We identified and analyzed AEs associated with D-pen between April-1970 to July-2020 from the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) databases and calculated the reported odds ratio (ROR) with 95% confidence intervals (CI) using the disproportionality analysis. RESULTS: A total of 9,150,234 AEs related to drugs were reported in the FAERS database, of which 542 were related to D-Pen. We report that D-pen was associated with dystonia (ROR: 20.52; 95%CI: 12.46-33.80), drug hypersensitivity (ROR: 5.42; 95%CI: 3.72-7.90), pancytopenia (ROR: 10.20; 95%CI: 5.61-18.56), joint swelling (ROR: 9.07; 95%CI: 5.51-14.94), renal-impairment (ROR: 6.68; 95%CI: 3.67-12.15), dysphagia (ROR: 5.05; 95%CI: 2.76-8.89), aggravation of condition (ROR: 4.16; 95%CI: 2.60-6.67), congestive cardiac failure (ROR: 4.04; 95%CI: 2.22-7.35), peripheral edema (ROR: 3.77; 95%CI: 2.17-6.55), tremor (ROR: 3.46; 95%CI: 2.00-6.01), pyrexia (ROR: 3.46; 95%CI: 2.00-6.01), and gait disturbance (ROR: 2.41; 95%CI: 1.29-4.52). CONCLUSIONS: Patients taking D-pen require close monitoring of renal function, blood counts, immunity, liver, cardiac function, and neurological function. D-pen suppresses immune system which maximizes the risk of infection.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Quelantes/efectos adversos , Penicilamina/efectos adversos , Adolescente , Adulto , Anciano , Bases de Datos Factuales , Monitoreo de Drogas/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Farmacovigilancia , Estudios Retrospectivos , Estados Unidos , United States Food and Drug Administration , Adulto Joven
3.
Plants (Basel) ; 10(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540497

RESUMEN

The present study was aimed at exploring the effect of soil application of different concentrations of orthophosphate (P) (0, 10, 20, 30, and 40 mg kg-1) on rice agronomic and yield parameters, arsenic (As) species accumulation, and polyphenol levels in the grain of rice grown under As spiked soil (10 mg kg-1). The contents of As species (As(V), As (III), MMA and DMA) and polyphenols in rice grain samples were estimated using LC-ICP-MS and LC-MS/MS, respectively. P treatments significantly reduced the toxic effects of As on agronomic parameters such as root weight and length, shoot and spike length, straw, and grain yield. Among the treatments studied, only the treatment of 30 mg kg-1 P helps to decrease the elevated levels of As (V), As (III), and DMA in rice grains due to As application. The study revealed that 30 mg kg-1 was the optimal P application amount to minimize AS accumulation in rice grains and As-linked toxicity on agronomic parameters and chlorophyll biosynthesis. Furthermore, the levels of trans-ferulic acid, chlorogenic acid, caffeic acid, and apigenin-7-glucoside increased in response to accumulation of As in the rice grain. In conclusion, the precise use of phosphorus may help to mitigate arsenic linked phytotoxicity and enhance the food safety aspect of rice grain.

4.
J Pers Med ; 11(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503824

RESUMEN

A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.

5.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050457

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients. However, the effect of the Val66Met polymorphism on cardiac function has not been determined. The goal of the current study was to determine the effects of rs6265 on BDNF biomarker suitability and DMD cardiac functions more generally. We assessed cardiovascular and skeletal muscle function in human DMD patients segregated by polymorphic allele. We also compared echocardiographic, electrophysiologic, and cardiomyocyte contractility in C57/BL-6 wild-type mice with rs6265 polymorphism and in mdx/mTR (mDMD) mouse model of DMD. In human DMD patients, plasma BDNF levels had a positive correlation with left ventricular function, opposite to that seen in rs6265 carriers. There was also a substantial decrease in skeletal muscle function in carriers compared to the Val homozygotes. Surprisingly, the opposite was true when cardiac function of DMD carriers and non-carriers were compared. On the other hand, Val66Met wild-type mice had only subtle functional differences at baseline but significantly decreased cardiomyocyte contractility. Our results indicate that the Val66Met polymorphism alters myocyte contractility, conferring worse skeletal muscle function but better cardiac function in DMD patients. Moreover, these results suggest a mechanism for the relative preservation of cardiac tissues compared to skeletal muscle in DMD patients and underscores the complexity of BDNF signaling in response to mechanical workload.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/metabolismo , Predisposición Genética a la Enfermedad , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple , Animales , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Regulación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Ratones , Ratones Transgénicos , Contracción Miocárdica
6.
J Clin Med ; 9(6)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549293

RESUMEN

In light of the favorable outcomes of few small, non-randomized clinical studies, the Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) to Hydroxychloroquine (HCQ) for hospitalized coronavirus disease 2019 (COVID-19) patients. In fact, subsequent clinical studies with COVID-19 and HCQ have reported limited efficacy and poor clinical benefits. Unfortunately, a robust clinical trial for its effectiveness is not feasible at this emergency. Additionally, HCQ was suspected of causing cardiovascular adverse reactions (CV-AEs), but it has never been directly investigated. The objective of this pharmacovigilance analysis was to determine and characterize HCQ-associated cardiovascular adverse events (CV-AEs). We performed a disproportionality analysis of HCQ-associated CV-AEs using the FDA adverse event reporting system (FAERS) database. The FAERS database, comprising more than 11,901,836 datasets and 10,668,655 patient records with drug-adverse reactions, was analyzed. The disproportionality analysis was used to calculate the reporting odds ratios (ROR) with 95% confidence intervals (CI) to predict HCQ-associated CV-AEs. HCQ was associated with higher reporting of right ventricular hypertrophy (ROR: 6.68; 95% CI: 4.02 to 11.17), left ventricular hypertrophy (ROR: 3.81; 95% CI: 2.57 to 5.66), diastolic dysfunction (ROR: 3.54; 95% CI: 2.19 to 5.71), pericarditis (ROR: 3.09; 95% CI: 2.27 to 4.23), torsades de pointes (TdP) (ROR: 3.05; 95% CI: 2.30 to 4.10), congestive cardiomyopathy (ROR: 2.98; 95% CI: 2.01 to 4.42), ejection fraction decreased (ROR: 2.41; 95% CI: 1.80 to 3.22), right ventricular failure (ROR: 2.40; 95% CI: 1.64 to 3.50), atrioventricular block complete (ROR: 2.30; 95% CI: 1.55 to 3.41) and QT prolongation (ROR: 2.09; 95% CI: 1.74 to 2.52). QT prolongation and TdP are most relevant to the COVID-19 treatment regimen of high doses for a comparatively short period and represent the most common HCQ-associated AEs. The patients receiving HCQ are at higher risk of various cardiac AEs, including QT prolongation and TdP. These findings highlight the urgent need for prospective, randomized, controlled studies to assess the risk/benefit ratio of HCQ in the COVID-19 setting before its widespread adoption as therapy.

7.
Cells ; 9(5)2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365965

RESUMEN

Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3ß) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3ß prior to obesity). In the present study, we investigated the role of CM-GSK-3ß in a clinically more relevant model of established obesity (deletion of CM-GSK-3ß after established obesity). CM-GSK-3ß knockout (GSK-3ßfl/flCre+/-) and controls (GSK-3ßfl/flCre-/-) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3ß specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3ß knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3ß in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical ß-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.


Asunto(s)
Eliminación de Gen , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Pruebas de Función Cardíaca , Corazón/fisiopatología , Miocitos Cardíacos/enzimología , Obesidad/enzimología , Obesidad/fisiopatología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Transducción de Señal , Remodelación Ventricular
8.
Int J Cardiol ; 316: 214-221, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470534

RESUMEN

The advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib. Multiple unbiased screening from our lab and others have identified ponatinib as most cardiotoxic FDA approved TKI among the entire FDA approved TKI family (total 50+). Indeed, ponatinib is the only treatment option for CML patients with T315I mutation. This review focusses on the cardiovascular risks and mechanism/s associated with CML TKIs with a particular focus on ponatinib cardiotoxicity. We have summarized our recent findings with transgenic zebrafish line harboring BNP luciferase activity to demonstrate the cardiotoxic potential of ponatinib. Additionally, we will review the recent discoveries reported by our and other laboratories that ponatinib primarily exerts its cardiotoxicity via an off-target effect on cardiomyocyte prosurvival signaling pathways, AKT and ERK. Finally, we will shed light on future directions for minimizing the adverse sequelae associated with CML-TKIs.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Animales , Antineoplásicos/efectos adversos , Resistencia a Antineoplásicos , Humanos , Imidazoles , Inhibidores de Proteínas Quinasas/efectos adversos , Piridazinas , Pez Cebra
9.
Chemosphere ; 238: 124623, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31545212

RESUMEN

The Indo-Gangetic alluvium is prime region for intensive agricultural. In some areas of this region, groundwater is now becoming progressively polluted by contamination with poisonous substances like arsenic. Intensive irrigation with arsenic contaminated ground water in dry spell results in the formation of As(III) which is more toxic. Thus groundwater quality assessment of Gangetic basin has become essential for its safer use. Therefore we under took study on the spatial variability of arsenic by collecting georeferred groundwater samples on grid basis from various water sources like dug well, bore and hand pumps covering the river bank region of Ganga basin. Water quality was investigated through determination pH, EC, TDS, salinity, Na, K, Ca, Mg, SAR, SSP, CO3, HCO3, RSC, Cl, As, Fe, Zn, Mn and Cu, etc. Results pointed severe As contamination in ground water of three sites of the study area. ARC GIS software is now able to process maps along with tabular data and compare them well, to provide the spatial visualization of information and using this tool, the Geographical Information System (GIS) of arsenic was developed. It was noticed from spatial maps that concentration of arsenic was more near the meandering points of Ganga.


Asunto(s)
Arsénico/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Geografía , Humanos , India , Iones , Medición de Riesgo , Salinidad , Contaminación del Agua/análisis , Calidad del Agua , Abastecimiento de Agua/normas
10.
Cardiovasc Res ; 115(1): 20-30, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321309

RESUMEN

With an estimated 38 million current patients, heart failure (HF) is a leading cause of morbidity and mortality worldwide. Although the aetiology differs, HF is largely a disease of cardiomyocyte (CM) death or dysfunction. Due to the famously limited amount of regenerative capacity of the myocardium, the only viable option for advanced HF patients is cardiac transplantation; however, donor's hearts are in very short supply. Thus, novel regenerative strategies are urgently needed to reconstitute the injured hearts. Emerging data from our lab and others have elucidated that CM-specific deletion of glycogen synthase kinase (GSK)-3 family of kinases induces CM proliferation, and the degree of proliferation is amplified in the setting of cardiac stress. If this proliferation is sufficiently robust, one could induce meaningful regeneration without the need for delivering exogenous cells to the injured myocardium (i.e. cardiac regeneration in situ). Herein, we will discuss the emerging role of the GSK-3s in CM proliferation and differentiation, including their potential implications in cardiac regeneration. The underlying molecular interactions and cross-talk among signalling pathways will be discussed. We will also review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to stimulate the endogenous cardiac regenerative responses to repair the injured heart.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Insuficiencia Cardíaca/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Regeneración/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Vía de Señalización Hippo , Humanos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Neurregulina-1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
11.
Sci Rep ; 8(1): 3719, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487356

RESUMEN

Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules. Cooperative actions of the EPEC effectors EspF and Map have been reported to mediate tight junction disruption. To analyze the individual contributions of EspF and Map, we generated in vitro models where EspF and Map, derived from the EPEC strain E2348/69, were constitutively expressed in epithelial cells. Here we report that tight junction disruption by EspF and Map is caused by the inhibition of the junctional recruitment of proteins during tight junction assembly. Constitutive expression of EspF and Map depleted the levels of tight junction proteins. EspF down-regulated the transcript levels of claudin-1, occludin and ZO-1, while Map down-regulated only claudin-1 transcripts. Both effectors also caused lysosomal degradation of existing tight junction proteins. We also identified a novel interaction of Map with non-muscle myosin II. Consistent with earlier studies, EspF was found to interact with ZO-1 while actin was the common interacting partner for both effectors. Our data provides evidence for the distinct roles of Map and EspF in tight junction disruption through non-synergistic functions.


Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/microbiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Escherichia coli Enteropatógena/genética , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Humanos , Mucosa Intestinal/citología , Péptidos y Proteínas de Señalización Intracelular
12.
Int J Cardiol ; 259: 145-152, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29398139

RESUMEN

BACKGROUND AND RATIONALE: Obesity, an independent risk factor for the development of myocardial diseases is a growing healthcare problem worldwide. It's well established that GSK-3ß is critical to cardiac pathophysiology. However, the role cardiomyocyte (CM) GSK-3ß in diet-induced cardiac dysfunction is unknown. METHODS: CM-specific GSK-3ß knockout (CM-GSK-3ß-KO) and littermate controls (WT) mice were fed either a control diet (CD) or high-fat diet (HFD) for 55weeks. Cardiac function was assessed by transthoracic echocardiography. RESULTS: At baseline, body weights and cardiac function were comparable between the WT and CM-GSK-3ß-KOs. However, HFD-fed CM-GSK-3ß-KO mice developed severe cardiac dysfunction. Consistently, both heart weight/tibia length and lung weight/tibia length were significantly elevated in the HFD-fed CM-GSK-3ß-KO mice. The impaired cardiac function and adverse ventricular remodeling in the CM-GSK-3ß-KOs were independent of body weight or the lean/fat mass composition as HFD-fed CM-GSK-3ß-KO and controls demonstrated comparable body weight and body masses. At the molecular level, on a CD, CM-GSK-3α compensated for the loss of CM-GSK-3ß, as evident by significantly reduced GSK-3αs21 phosphorylation (activation) resulting in a preserved canonical ß-catenin ubiquitination pathway and cardiac function. However, this protective compensatory mechanism is lost with HFD, leading to excessive accumulation of ß-catenin in HFD-fed CM-GSK-3ß-KO hearts, resulting in adverse ventricular remodeling and cardiac dysfunction. CONCLUSION: In summary, these results suggest that cardiac GSK-3ß is crucial to protect against obesity-induced adverse ventricular remodeling and cardiac dysfunction.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Eliminación de Gen , Glucógeno Sintasa Quinasa 3 beta/deficiencia , Miocitos Cardíacos/enzimología , Obesidad/enzimología , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/patología , Obesidad/genética , Obesidad/patología
13.
J Mol Cell Cardiol ; 110: 109-120, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28756206

RESUMEN

Nearly every form of the heart disease is associated with myocardial fibrosis, which is characterized by the accumulation of activated cardiac fibroblasts (CFs) and excess deposition of extracellular matrix (ECM). Although, CFs are the primary mediators of myocardial fibrosis in a diseased heart, in the traditional view, activated CFs (myofibroblasts) and resulting fibrosis were simply considered the secondary consequence of the disease, not the cause. Recent studies from our lab and others have challenged this concept by demonstrating that fibroblast activation and fibrosis are not simply the secondary consequence of a diseased heart, but are crucial for mediating various myocardial disease processes. In regards to the mechanism, the vast majority of literature is focused on the direct role of canonical SMAD-2/3-mediated TGF-ß signaling to govern the fibrogenic process. Herein, we will discuss the emerging role of the GSK-3ß, ß-catenin and TGF-ß1-SMAD-3 signaling network as a critical regulator of myocardial fibrosis in the diseased heart. The underlying molecular interactions and cross-talk among signaling pathways will be discussed. We will primarily focus on recent in vivo reports demonstrating that CF-specific genetic manipulation can lead to aberrant myocardial fibrosis and sturdy cardiac phenotype. This will allow for a better understanding of the driving role of CFs in the myocardial disease process. We will also review the specificity and limitations of the currently available genetic tools used to study myocardial fibrosis and its associated mechanisms. A better understanding of the GSK-3ß, ß-catenin and SMAD-3 signaling network may provide a novel therapeutic target for the management of myocardial fibrosis in the diseased heart.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Miocardio/metabolismo , Miocardio/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo , Animales , Fibrosis , Humanos
14.
Bioengineered ; 6(6): 335-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26430918

RESUMEN

Enteropathogenic E. coli (EPEC) cause diarrhea and are the major cause of mortality in developing countries. EPEC use a type III secretion system to deliver effector proteins into the host epithelial cells. To understand the functions of these effectors, majority of studies on EPEC pathogenesis have relied on infections of animals or cell lines with wild type strains of EPEC or mutant strains deficient in one or more effectors. While these studies have provided valuable data, it can be difficult to assess functions of an individual effector in the presence of other EPEC effectors. Recent studies have reported the use of transient transfections with plasmids encoding various EPEC effectors into different cell lines. However, variable transfection efficiencies and expression levels of the effector proteins coupled with their expression for relatively short periods of time pose a problem if the long term effects of these effectors need to be examined. We have generated a MDCK cell line with constitutive expression of the EPEC effector Map (Mitochondrial associated protein) for efficient stable expression of EGFP-tagged Map. We observed that the constitutive expression of Map increased the permeability of charged and non-charged molecules. We also generated polyclonal antibodies against Map and checked for their specificity in MDCK-Map expressing cells. Map has been reported to contribute to the onset of diarrhea but the underlying mechanism is yet to be identified. The MDCK-Map cell line and the anti-Map antibodies generated by us can be used for in vitro studies to examine the role of Map in EPEC pathogenesis.


Asunto(s)
Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/genética , Animales , Anticuerpos Antibacterianos/biosíntesis , Clonación Molecular , Perros , Escherichia coli Enteropatógena/inmunología , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Ingeniería Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Células de Riñón Canino Madin Darby , Ratones , Modelos Biológicos , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Uniones Estrechas/metabolismo , Transfección , Virulencia/genética
15.
F1000Res ; 4: 231, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27239268

RESUMEN

Enteropathogenic E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.

16.
Bioinformation ; 5(8): 320-5, 2011 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383918

RESUMEN

Visceral leishmaniasis is a macrophage associated disorder which leads to a profound decrease in the natural immunotherapeutic potential of the infected subjects to combat the disease. The major surface glycoprotein gp63 has been found to be a significant vaccine candidate against visceral leishmaniasis. The current study addresses the levels of similarity and identity in the gp63 obtained from different species of Leishmania viz donovoni, chagasi and infantum linked to the cause of visceral leishmaniasis. The results from BLAST, Phylogram and Cladogram studies indicate significant identity, similarity and conservation of important residues in the protein which lead us to conclude that a common gp63 based vaccine can be used as a therapeutical tool against visceral leishmaniasis caused by different species strains of leishmania.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...