Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Eng Phys ; 113: 103959, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36965999

RESUMEN

Loading configuration of hip joint creates resultant bending effect on femoral implants. So, the lateral side of femoral implant which is under tension retracts from peri­implant bone due to positive Poisson's ratio. This retraction of implant leads to load shielding and gap opening in proximal-lateral region, thereby allowing entry of wear particle to implant-bone interface. Retraction of femoral implant can be avoided by introducing auxetic metamaterial to the retracting side. This allows the implant to push peri­implant bone under tensile condition by virtue of their auxetic (negative Poisson's ratio) nature. To develop such implants, a patient-specific conventional solid implant was first designed based on computed-tomography scan of a patient's femur. Two types of metamaterials (2D: type-1) and (3D: type-2) were employed to design femoral meta-implants. Type-1 and type-2 meta-implants were fabricated using metallic 3D printing method and mechanical compression testing was conducted. Three finite element (FE) models of the femur implanted with solid implant, type-1 meta-implant and type-2 meta-implant were developed and analysed under compression loading. Significant correlation (R2 = 0.9821 and R2 = 0.9977) was found between the experimental and FE predicted strains of the two meta-implants. In proximal-lateral region of the femur, an increase of 7.1% and 44.1% von-Mises strain was observed when implanted with type-1 and type-2 meta-implant over the solid implant. In this region, bone remodelling analysis revealed 2.5% bone resorption in case of solid implant. While bone apposition of 0.5% and 7.7% was observed in case of type-1 and type-2 meta-implants, respectively. The results of this study indicates that concept of introduction of metamaterial to the lateral side of femoral implant can prove to provide higher osseointegration-friendly environment in the proximal-lateral region of femur.


Asunto(s)
Fémur , Prótesis e Implantes , Humanos , Fémur/cirugía , Oseointegración , Remodelación Ósea , Extremidad Inferior , Análisis de Elementos Finitos
2.
Int J Artif Organs ; 45(8): 715-721, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35730118

RESUMEN

The articular disc reduces the stress distribution from the mandible to fossa. In total temporomandibular joint (TMJ) replacement, the implant is required to reduce the stress on fossa implant. Current studies lack standard and optimized parameters for the cylindrical dome on Christensen TMJ implant collar. This study briefed a novel TMJ implant head design and investigates the biomechanical behaviour by considering the articular disc. The radius of the head was varied with the height of the cylinder height to obtain the design of the experiment and the stress distribution was compared with an intact mandible-articular disc model by considering the viscoelastic property of the TMJ disc. The model was simulated at three different angles: 20°, 0° and -20° in the mediolateral direction to simulate the manducation. FEA analysis showed high stresses at the circular heads, and high strength is achieved with increased implant cylinder length and diameter. The results also showed a stress reduction of 50% on the fossa from the mandible. Hence, the newly designed head and suggested modifications may be used as a reference for further clinical improvement of Christensen TMJ as well as other TMJ implants.


Asunto(s)
Prótesis Articulares , Cóndilo Mandibular , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Articulación Temporomandibular/cirugía , Disco de la Articulación Temporomandibular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA