Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 16(1): 43, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515211

RESUMEN

BACKGROUND: Limited understanding of the diversity of variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene across ancestries hampers efforts to advance molecular diagnosis of cystic fibrosis (CF). The consequences pose a risk of delayed diagnoses and subsequently worsened health outcomes for patients. Therefore, characterizing the spectrum of CFTR variants across ancestries is critical for revolutionizing molecular diagnoses of CF. METHODS: We analyzed 454,727 UK Biobank (UKBB) whole-exome sequences to characterize the diversity of CFTR variants across ancestries. Using the PanUKBB classification, the participants were assigned into six major groups: African (AFR), American/American Admixed (AMR), Central South Asia (CSA), East Asian (EAS), European (EUR), and Middle East (MID). We segregated ancestry-specific CFTR variants, including those that are CF-causing or clinically relevant. The ages of certain CF-causing variants were determined and analyzed for selective pressure effects, and curated phenotype analysis was performed for participants with clinically relevant CFTR genotypes. RESULTS: We detected over 4000 CFTR variants, including novel ancestry-specific variants, across six ancestries. Europeans had the most unique CFTR variants [n = 2212], while the American group had the least unique variants [n = 23]. F508del was the most prevalent CF-causing variant found in all ancestries, except in EAS, where V520F was the most prevalent. Common EAS variants such as 3600G > A, V456A, and V520, which appeared approximately 270, 215, and 338 generations ago, respectively, did not show evidence of selective pressure. Sixteen participants had two CF-causing variants, with two being diagnosed with CF. We found 154 participants harboring a CF-causing and varying clinical consequences (VCC) variant. Phenotype analysis performed for participants with multiple clinically relevant variants returned significant associations with CF and its pulmonary phenotypes [Bonferroni-adjusted p < 0.05]. CONCLUSIONS: We leveraged the UKBB database to comprehensively characterize the broad spectrum of CFTR variants across ancestries. The detection of over 4000 CFTR variants, including several ancestry-specific and uncharacterized CFTR variants, warrants the need for further characterization of their functional and clinical relevance. Overall, the presentation of classical CF phenotypes seen in non-CF diagnosed participants with more than one CF-causing variant indicates that they may benefit from current CFTR modulator therapies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Bancos de Muestras Biológicas , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exoma , Mutación , Biobanco del Reino Unido
2.
Bioorg Med Chem Lett ; 72: 128843, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35688367

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Benzodioxoles , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación , Prolina/análogos & derivados , Relación Estructura-Actividad
3.
Am J Respir Cell Mol Biol ; 64(5): 604-616, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33616476

RESUMEN

Premature-termination codons (PTCs) in CFTR (cystic fibrosis [CF] transmembrane conductance regulator) result in nonfunctional CFTR protein and are the proximate cause of ∼11% of CF-causing alleles, for which no treatments exist. The CFTR corrector lumacaftor and the potentiator ivacaftor improve CFTR function with terminal PTC mutations and enhance the effect of readthrough agents. Novel correctors GLPG2222 (corrector 1 [C1]), GLPG3221 (corrector 2 [C2]), and potentiator GLPG1837 compare favorably with lumacaftor and ivacaftor in vitro. Here, we evaluated the effect of correctors C1a and C2a (derivatives of C1 and C2) and GLPG1837 alone or in combination with the readthrough compound G418 on CFTR function using heterologous Fischer rat thyroid (FRT) cells, the genetically engineered human bronchial epithelial (HBE) 16HBE14o- cell lines, and primary human cells with PTC mutations. In FRT lines pretreated with G418, GLPG1837 elicited dose-dependent increases in CFTR activity that exceeded those from ivacaftor in FRT-W1282X and FRT-R1162X cells. A three-mechanism strategy consisting of G418, GLPG1837, and two correctors (C1a + C2a) yielded the greatest functional improvements in FRT and 16HBE14o- PTC variants, noting that correction and potentiation without readthrough was sufficient to stimulate CFTR activity for W1282X cells. GLPG1837 + C1a + C2a restored substantial function in G542X/F508del HBE cells and restored even more function for W1282X/F508del cells, largely because of the corrector/potentiator effect, with no additional benefit from G418. In G542X/R553X or R1162X/R1162X organoids, enhanced forskolin-induced swelling was observed with G418 + GLPG1837 + C1a + C2a, although GLPG1837 + C1a + C2a alone was sufficient to improve forskolin-induced swelling in W1282X/W1282X organoids. Combination of CFTR correctors, potentiators, and readthrough compounds augments the functional repair of CFTR nonsense mutations, indicating the potential for novel correctors and potentiators to restore function to truncated W1282X CFTR.


Asunto(s)
Benzoatos/farmacología , Benzopiranos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Células Epiteliales/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Piranos/farmacología , Pirazoles/farmacología , Aminofenoles/farmacología , Aminopiridinas/farmacología , Animales , Benzodioxoles/farmacología , Línea Celular , Cloruros/metabolismo , Codón sin Sentido , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Células Epiteliales/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Quinolonas/farmacología , Ratas , Recuperación de la Función , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo
4.
J Pharmacol Exp Ther ; 372(1): 107-118, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732698

RESUMEN

Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.


Asunto(s)
Benzoatos/farmacología , Benzopiranos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pliegue de Proteína/efectos de los fármacos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Células Cultivadas , Cloruros/metabolismo , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Células HEK293 , Humanos , Moduladores del Transporte de Membrana/farmacología , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo
5.
ACS Med Chem Lett ; 10(11): 1543-1548, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31749908

RESUMEN

Cystic fibrosis (CF) is a genetic disorder that affects multiple tissues and organs. CF is caused by mutations in the CFTR gene, resulting in insufficient or impaired cystic fibrosis transmembrane conductance regulator (CFTR) protein. The deletion of phenylalanine at position 508 of the protein (F508del-CFTR) is the most common mutation observed in CF patients. The most effective treatments of these patients employ two CFTR modulator classes, correctors and potentiators. CFTR correctors increase protein levels at the cell surface; CFTR potentiators enable the functional opening of CFTR channels at the cell surface. Triple-combination therapies utilize two distinct corrector molecules (C1 and C2) to further improve the overall efficacy. We identified the need to develop a C2 corrector series that had the potential to be used in conjunction with our existing C1 corrector series and provide robust clinical efficacy for CF patients. The identification of a pyrrolidine series of CFTR C2 correctors and the structure-activity relationship of this series is described. This work resulted in the discovery and selection of (2S,3R,4S,5S)-3-(tert-butyl)-4-((2-methoxy-5-(trifluoromethyl)pyridin-3-yl)methoxy)-1-((S)-tetrahydro-2H-pyran-2-carbonyl)-5-(o-tolyl)pyrrolidine-2-carboxylic acid (ABBV/GLPG-3221), which was advanced to clinical trials.

6.
Front Pharmacol ; 10: 514, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143125

RESUMEN

The deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) causes a severe defect in folding and trafficking of the chloride channel resulting in its absence at the plasma membrane of epithelial cells leading to cystic fibrosis. Progress in the understanding of the disease increased over the past decades and led to the awareness that combinations of mechanistically different CFTR modulators are required to obtain meaningful clinical benefit. Today, there remains an unmet need for identification and development of more effective CFTR modulator combinations to improve existing therapies for patients carrying the F508del mutation. Here, we describe the identification of a novel F508del corrector using functional assays. We provide experimental evidence that the clinical candidate GLPG/ABBV-2737 represents a novel class of corrector exerting activity both on its own and in combination with VX809 or GLPG/ABBV-2222.

7.
J Cyst Fibros ; 17(2S): S14-S21, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28916430

RESUMEN

Cystic fibrosis (CF) mutations have complex effects on the cystic fibrosis transmembrane conductance regulator (CFTR) protein. They disrupt its processing to and stability at the plasma membrane and function as an ATP-gated Cl- channel. Here, we review therapeutic strategies to overcome defective CFTR processing and stability. Because CF mutations have multiple impacts on the assembly of CFTR protein, combination therapy with several pharmacological chaperones is likely to be required to rescue mutant CFTR expression at the plasma membrane. Alternatively, proteostasis regulators, proteins which regulate the synthesis, intracellular transport and membrane stability of CFTR might be targeted to enhance the plasma membrane expression of mutant CFTR. Finally, we consider an innovative approach to bypass CFTR dysfunction in CF, the delivery of artificial anion transporters to CF epithelia to shuttle Cl- across the apical membrane. The identification of therapies or combinations of therapies, which rescue all CF mutations, is now a priority.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística/metabolismo , Desarrollo de Medicamentos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Mutación
8.
J Med Chem ; 61(4): 1436-1449, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29251932

RESUMEN

Cystic fibrosis (CF) is a multiorgan disease of the lungs, sinuses, pancreas, and gastrointestinal tract that is caused by a dysfunction or deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial anion channel that regulates salt and water balance in the tissues in which it is expressed. To effectively treat the most prevalent patient population (F508del mutation), two biomolecular modulators are required: correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. Despite approved potentiator and potentiator/corrector combination therapies, there remains a high need to develop more potent and efficacious correctors. Herein, we disclose the discovery of a highly potent series of CFTR correctors and the structure-activity relationship (SAR) studies that guided the discovery of ABBV/GLPG-2222 (22), which is currently in clinical trials in patients harboring the F508del CFTR mutation on at least one allele.


Asunto(s)
Benzoatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Descubrimiento de Drogas , Amidas/síntesis química , Animales , Benzoatos/síntesis química , Benzoatos/farmacocinética , Cromanos/síntesis química , Perros , Humanos , Proteínas Mutantes/efectos de los fármacos , Ratas , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 106(44): 18825-30, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19846789

RESUMEN

Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface (e.g., synthesis or processing mutations) or impair channel function (e.g., gating or conductance mutations) or both. There are currently no approved therapies that target CFTR. Here we describe the in vitro pharmacology of VX-770, an orally bioavailable CFTR potentiator in clinical development for the treatment of CF. In recombinant cells VX-770 increased CFTR channel open probability (P(o)) in both the F508del processing mutation and the G551D gating mutation. VX-770 also increased Cl(-) secretion in cultured human CF bronchial epithelia (HBE) carrying the G551D gating mutation on one allele and the F508del processing mutation on the other allele by approximately 10-fold, to approximately 50% of that observed in HBE isolated from individuals without CF. Furthermore, VX-770 reduced excessive Na(+) and fluid absorption to prevent dehydration of the apical surface and increased cilia beating in these epithelial cultures. These results support the hypothesis that pharmacological agents that restore or increase CFTR function can rescue epithelial cell function in human CF airway.


Asunto(s)
Aminofenoles/farmacología , Bronquios/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Quinolinas/farmacología , Quinolonas/farmacología , Absorción/efectos de los fármacos , Sustitución de Aminoácidos/efectos de los fármacos , Aminofenoles/química , Animales , Células Cultivadas , Cloruros/metabolismo , Cilios/efectos de los fármacos , Cilios/metabolismo , Sinergismo Farmacológico , Canales Epiteliales de Sodio/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ratones , Mutación/genética , Células 3T3 NIH , Quinolinas/química , Quinolonas/química , Sodio/metabolismo
10.
Antimicrob Agents Chemother ; 50(11): 3674-9, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16966394

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa has two complete acyl-homoserine lactone (acyl-HSL) signaling systems, LasR-LasI and RhlR-RhlI. LasI catalyzes the synthesis of N-3-oxododecanoyl homoserine lactone (3OC12-HSL), and LasR is a transcription factor that requires 3OC12-HSL as a ligand. RhlI catalyzes the synthesis of N-butanoyl homoserine lactone (C4), and RhlR is a transcription factor that responds to C4. LasR and RhlR control the transcription of hundreds of P. aeruginosa genes, many of which are critical virulence determinants, and LasR is required for RhlR function. We developed an ultra-high-throughput cell-based assay to screen a library of approximately 200,000 compounds for inhibitors of LasR-dependent gene expression. Although the library contained a large variety of chemical structures, the two best inhibitors resembled the acyl-homoserine lactone molecule that normally binds to LasR. One compound, a tetrazole with a 12-carbon alkyl tail designated PD12, had a 50% inhibitory concentration (IC50) of 30 nM. The second compound, V-06-018, had an IC50 of 10 microM and is a phenyl ring with a 12-carbon alkyl tail. A microarray analysis showed that both compounds were general inhibitors of quorum sensing, i.e., the expression levels of most LasR-dependent genes were affected. Both compounds also inhibited the production of two quorum-sensing-dependent virulence factors, elastase and pyocyanin. These compounds should be useful for studies of LasR-dependent gene regulation and might serve as scaffolds for the identification of new quorum-sensing modulators.


Asunto(s)
Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Proteínas Bacterianas/genética , Western Blotting , Medios de Cultivo , Proteínas de Unión al ADN/genética , Evaluación Preclínica de Medicamentos , Electroforesis en Gel de Poliacrilamida , Biblioteca de Genes , Genes Bacterianos/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Pseudomonas aeruginosa/genética , Percepción de Quorum/genética , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/farmacología , Transactivadores/genética , Transcripción Genética , Factores de Virulencia/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 290(6): L1117-30, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16443646

RESUMEN

Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in cftr, a gene encoding a PKA-regulated Cl(-) channel. The most common mutation results in a deletion of phenylalanine at position 508 (DeltaF508-CFTR) that impairs protein folding, trafficking, and channel gating in epithelial cells. In the airway, these defects alter salt and fluid transport, leading to chronic infection, inflammation, and loss of lung function. There are no drugs that specifically target mutant CFTR, and optimal treatment of CF may require repair of both the folding and gating defects. Here, we describe two classes of novel, potent small molecules identified from screening compound libraries that restore the function of DeltaF508-CFTR in both recombinant cells and cultures of human bronchial epithelia isolated from CF patients. The first class partially corrects the trafficking defect by facilitating exit from the endoplasmic reticulum and restores DeltaF508-CFTR-mediated Cl(-) transport to more than 10% of that observed in non-CF human bronchial epithelial cultures, a level expected to result in a clinical benefit in CF patients. The second class of compounds potentiates cAMP-mediated gating of DeltaF508-CFTR and achieves single-channel activity similar to wild-type CFTR. The CFTR-activating effects of the two mechanisms are additive and support the rationale of a drug discovery strategy based on rescue of the basic genetic defect responsible for CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/fisiopatología , Células 3T3 , Animales , Biotinilación , Línea Celular , Células Cultivadas , Cloruros/metabolismo , Cresoles/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Humanos , Activación del Canal Iónico , Ratones , Pirazoles/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Glándula Tiroides/fisiología
12.
J Cyst Fibros ; 3 Suppl 2: 127-32, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15463944

RESUMEN

Transepithelial fluctuation analysis (noise analysis) provides valuable information about the density and single-channel properties of ion channels in intact epithelia. Here we investigate cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride (Cl-) secretion in T84 human colonic epithelia by inducing noise using the diarylsulfonylurea DASU-01, a low-affinity open-channel blocker of CFTR. Our data indicate that the apical membrane of maximally stimulated T84 epithelia has a very high Cl- conductance generated by approximately 7000 active CFTR channels per cell with open probability (Po) of approximately 0.4 and single-channel amplitude (i) of approximately 0.1 pA. Similar experiments might provide important information about how drugs regulate CFTR in intact epithelia.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Técnicas de Placa-Clamp/métodos , Membrana Celular/metabolismo , Células Cultivadas , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/efectos de los fármacos , Cloruros/análisis , Colon/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Modelos Biológicos , Compuestos de Sulfonilurea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA