Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445620

RESUMEN

Cartilage defects can be difficult to treat; therefore, tissue engineering of cartilage is emerging as a promising potential therapy. One interesting area of research explores the delivery of cells to the cartilage defect via scaffold-based cell delivery vehicles and microsurgery. This study explores the use of novel poly(glycerol sebacate) methacrylate (PGSm)-polymerised high internal phase emulsion (polyHIPE) microspheres as scaffolds with embedded cells for cartilage tissue engineering. Porous microsphere scaffolds (100 µm-1 mm diameter) were produced from emulsions consisting of water and a methacrylate-based photocurable resin of poly(glycerol sebacate). These resins were used in conjunction with a T-junction fluidic device and an ultraviolet (UV) curing lamp to produce porous microspheres with a tuneable size. This technique produced biodegradable PGSm microspheres with similar mechanical properties to cartilage. We further explore these microspheres as scaffolds for three-dimensional culture of chondrocytes. The microspheres proved to be very efficient scaffolds for primary chondrocyte culture and were covered by a dense extracellular matrix (ECM) network during the culture period, creating a tissue disk. The presence of glycosaminoglycans (GAGs) and collagen-II was confirmed, highlighting the utility of the PGSm microspheres as a delivery vehicle for chondrocytes. A number of imaging techniques were utilised to analyse the tissue disk and develop methodologies to characterise the resultant tissue. This study highlights the utility of porous PGSm microspheres for cartilage tissue engineering.


Asunto(s)
Condrocitos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Microesferas , Materiales Biocompatibles , Porosidad , Metacrilatos , Cartílago , Andamios del Tejido , Células Cultivadas
2.
PLoS Biol ; 20(5): e3001624, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617197

RESUMEN

Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.


Asunto(s)
Técnicas de Cultivo de Célula , Microfluídica , Animales , ADN , Humanos , Ratones , Modelos Biológicos
3.
Acta Biomater ; 78: 48-63, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30075322

RESUMEN

Entubulating devices to repair peripheral nerve injuries are limited in their effectiveness particularly for critical gap injuries. Current clinically used nerve guidance conduits are often simple tubes, far stiffer than that of the native tissue. This study assesses the use of poly(glycerol sebacate methacrylate) (PGSm), a photocurable formulation of the soft biodegradable material, PGS, for peripheral nerve repair. The material was synthesized, the degradation rate and mechanical properties of material were assessed and nerve guidance conduits were structured via stereolithography. In vitro cell studies confirmed PGSm as a supporting substrate for both neuronal and glial cell growth. Ex vivo studies highlight the ability of the cells from a dissociated dorsal root ganglion to grow out and align along the internal topographical grooves of printed nerve guide conduits. In vivo results in a mouse common fibular nerve injury model show regeneration of axons through the PGSm conduit into the distal stump after 21 days. After conduit repair levels of spinal cord glial activation (an indicator for neuropathic pain development) were equivalent to those seen following graft repair. In conclusion, results indicate that PGSm can be structured via additive manufacturing into functional NGCs. This study opens the route of personalized conduit manufacture for nerve injury repair. STATEMENT OF SIGNIFICANCE: This study describes the use of photocurable of Poly(Glycerol Sebacate) (PGS) for light-based additive manufacturing of Nerve Guidance Conduits (NGCs). PGS is a promising flexible biomaterial for soft tissue engineering, and in particular for nerve repair. Its mechanical properties and degradation rate are within the desirable range for use in neuronal applications. The nerve regeneration supported by the PGS NGCs is similar to an autologous nerve transplant, the current gold standard. A second assessment of regeneration is the activation of glial cells within the spinal cord of the tested animals which reveals no significant increase in neuropathic pain by using the NGCs. This study highlights the successful use of a biodegradable additive manufactured NGC for peripheral nerve repair.


Asunto(s)
Materiales Biocompatibles/farmacología , Decanoatos/farmacología , Glicerol/análogos & derivados , Regeneración Tisular Dirigida/métodos , Metacrilatos/farmacología , Regeneración Nerviosa/efectos de los fármacos , Polímeros/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Axones/efectos de los fármacos , Células Cultivadas , Peroné/efectos de los fármacos , Peroné/inervación , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Glicerol/farmacología , Masculino , Ratones , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...