Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Microbiol ; 116: 104364, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689426

RESUMEN

The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Anaerobiosis , Cromatografía Liquida , Hidroxiácidos , Ácidos Grasos
2.
J Microbiol Biotechnol ; 33(10): 1317-1328, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37435870

RESUMEN

Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.


Asunto(s)
Antioxidantes , Catequina , Humanos , Antioxidantes/farmacología , Espectrometría de Masas en Tándem , Polifenoles/farmacología , Polifenoles/química , Polifenoles/metabolismo , Bacterias , , Catequina/farmacología
3.
Commun Biol ; 5(1): 232, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35293898

RESUMEN

Bacterial-fungal metabolite trade-offs determine their ecological interactions. We designed a non-obligate pairwise metabolite cross-feeding (MCF) between Bacillus amyloliquefaciens and Aspergillus oryzae. Cross-feeding Aspergillus metabolites (MCF-1) affected higher growth and biofilm formation in Bacillus. LC-MS/MS-based multivariate analyses (MVA) showed variations in the endogenous metabolite profiles between the cross-fed and control Bacillus. We observed and validated that Aspergillus-derived oxylipins were rapidly depleted in Bacillus cultures concomitant with lowered secretion of cyclic lipopeptides (CLPs). Conversely, Bacillus extracts cross-fed to Aspergillus (MCF-2) diminished its mycelial growth and conidiation. Fungistatic effects of Bacillus-derived cyclic surfactins were temporally reduced following their hydrolytic linearization. MVA highlighted disparity between the cross-fed (MCF-2) and control Aspergillus cultures with marked variations in the oxylipin levels. We conclude that the pairwise MCF selectively benefitted Bacillus while suppressing Aspergillus, which suggests their ammensalic interaction. Widening this experimental pipeline across tailored communities may help model and simulate BFIs in more complex microbiomes.


Asunto(s)
Aspergillus oryzae , Bacillus amyloliquefaciens , Bacillus , Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem
4.
Foods ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34828797

RESUMEN

Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography-mass spectrometry), GC-MS (gas chromatography-mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.

5.
Sci Rep ; 10(1): 11116, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632328

RESUMEN

In fungi, contactless interactions are mediated via the exchange of volatile organic compounds (VOCs). As these pair-wise interactions are fundamental to complex ecosystem, we examined the effects of inter-species VOCs trade-offs in Aspergillus flavus development. First, we exposed A. flavus to the A. oryzae volatilome (Treatment-1) with highest relative abundance of 1-Octen-3-ol (~ 4.53 folds) among the C-8 VOCs. Further, we examined the effects of gradient titers of 1-Octen-3-ol (Treatment-2: 100-400 ppm/day) in a range that elicits natural interactions. On 7-day, VOC-treated A. flavus displayed significantly reduced growth and sclerotial counts (p < 0.01) coupled with higher conidial density (T2100-200 ppm/day, p < 0.01) and α-amylase secretion (T2200 ppm/day, p < 0.01), compared to the untreated sets. Similar phenotypic trends except for α-amylases were evident for 9-day incubated A. flavus in T2. The corresponding metabolomics data displayed a clustered pattern of secondary metabolite profiles for VOC-treated A. flavus (PC1-18.03%; PC2-10.67%). Notably, a higher relative abundance of aflatoxin B1 with lower levels of most anthraquinones, indole-terpenoids, and oxylipins was evident in VOC-treated A. flavus. The observed correlations among the VOC-treatments, phenotypes, and altered metabolomes altogether suggest that the distant exposure to the gradient titers of 1-Octen-3-ol elicits an attenuated developmental response in A. flavus characterized by heightened virulence.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Metaboloma/efectos de los fármacos , Octanoles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Aspergillus/clasificación , Aspergillus/efectos de los fármacos , Compuestos Orgánicos Volátiles/análisis
6.
PLoS One ; 15(7): e0236813, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726342

RESUMEN

High salt accumulation, resulting from the rampant use of chemical fertilizers in greenhouse cultivation, has deleterious effects on plant growth and crop yield. Herein, we delineated the effects of magnesium (Mg) oversupply on Perilla frutescens leaves, a traditional edible and medicinal herb used in East-Asian countries. Mg oversupply resulted in significantly higher chlorophyll content coupled with lower antioxidant activities and growth, suggesting a direct effect on subtle metabolomes. The relative abundance of bioactive phytochemicals, such as triterpenoids, flavonoids, and cinnamic acids, was lower in the Mg-oversupplied plants than in the control. Correlation analysis between plant phenotypes (plant height, total fresh weight of the shoot, leaf chlorophyll content, and leaf antioxidant content) and the altered metabolomes in P. frutescens leaves suggested an acclimatization mechanism to Mg oversupply. In conclusion, P. frutescens preferentially accumulated compatible solutes, i.e., carbohydrates and amino acids, to cope with higher environmental Mg levels, instead of employing secondary and antioxidative metabolism.


Asunto(s)
Aclimatación/efectos de los fármacos , Magnesio/farmacología , Metabolómica , Perilla frutescens/efectos de los fármacos , Perilla frutescens/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Perilla frutescens/crecimiento & desarrollo , Perilla frutescens/fisiología , Fenotipo , Hojas de la Planta/fisiología
7.
J Ginseng Res ; 44(3): 413-423, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32372863

RESUMEN

BACKGROUND: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. METHODS: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. RESULTS: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. CONCLUSION: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.

8.
BMC Plant Biol ; 20(1): 39, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992195

RESUMEN

BACKGROUND: Plants have been used as an important source of indispensable bioactive compounds in various cosmetics, foods, and medicines. However, the subsequent functional annotation of these compounds seems arduous because of the largely uncharacterized, vast metabolic repertoire of plant species with known biological phenotypes. Hence, a rapid multi-parallel screening and characterization approach is needed for plant functional metabolites. RESULTS: Fifty-one species representing three plant families, namely Asteraceae, Fabaceae, and Rosaceae, were subjected to metabolite profiling using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultrahigh-performance liquid chromatography quadrupole orbitrap ion trap tandem mass spectrometry (UHPLC-Q-orbitrap-MS/MS) as well as multivariate analyses. Partial least squares discriminant analysis (PLS-DA) of the metabolite profiling datasets indicated a distinct clustered pattern for 51 species depending on plant parts (leaves and stems) and relative phylogeny. Examination of their relative metabolite contents showed that the extracts from Fabaceae plants were abundant in amino acids, fatty acids, and genistein compounds. However, the extracts from Rosaceae had higher levels of catechin and ellagic acid derivatives, whereas those from Asteraceae were higher in kaempferol derivatives and organic acids. Regardless of the different families, aromatic amino acids, branch chain amino acids, chlorogenic acid, flavonoids, and phenylpropanoids related to the shikimate pathway were abundant in leaves. Alternatively, certain amino acids (proline, lysine, and arginine) as well as fatty acids levels were higher in stem extracts. Further, we investigated the associated phenotypes, i.e., antioxidant activities, affected by the observed spatial (leaves and stem) and intra-family metabolomic disparity in the plant extracts. Pearson's correlation analysis indicated that ellagic acid, mannitol, catechin, epicatechin, and quercetin derivatives were positively correlated with antioxidant phenotypes, whereas eriodictyol was positively correlated with tyrosinase inhibition activity. CONCLUSIONS: This work suggests that metabolite profiling, including multi-parallel approaches and integrated bioassays, may help the expeditious characterization of plant-derived metabolites while simultaneously unraveling their chemodiversity.


Asunto(s)
Metaboloma , Extractos Vegetales/química , Hojas de la Planta/química , Tallos de la Planta/química , Aminoácidos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Asteraceae/química , Asteraceae/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Fabaceae/química , Fabaceae/metabolismo , Ácidos Grasos/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Redes y Vías Metabólicas , Metabolómica/métodos , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Rosaceae/química , Rosaceae/metabolismo , Espectrometría de Masas en Tándem
9.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795288

RESUMEN

Beech mushrooms (Hypsizygus marmoreus) are largely relished for their characteristic earthy flavor, chewy-texture, and gustatory and nutritional properties in East Asian societies. Intriguingly, the aforementioned properties of beech mushroom can be subsumed under its elusive metabolome and subtle transcriptome regulating its various stages of growth and development. Herein, we carried out an integrated metabolomic and transcriptomic profiling for different sized beech mushrooms across spatial components (cap and stipe) to delineate their signature pathways. We observed that metabolite profiles and differentially expressed gene (DEGs) displayed marked synergy for specific signature pathways according to mushroom sizes. Notably, the amino acid, nucleotide, and terpenoid metabolism-related metabolites and genes were more abundant in small-sized mushrooms. On the other hand, the relative levels of carbohydrates and TCA intermediate metabolites as well as corresponding genes were linearly increased with mushroom size. However, the composition of flavor-related metabolites was varying in different sized beech mushrooms. Our study explores the signature pathways associated with growth, development, nutritional, functional and organoleptic properties of different sized beech mushrooms.


Asunto(s)
Agaricales/metabolismo , Metaboloma , Transcriptoma , Agaricales/genética , Agaricales/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos
10.
Metabolites ; 9(10)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623116

RESUMEN

In general, greenhouse cultivation involves the rampant application of chemical fertilizers, with the aim of achieving high yields. Oversaturation with mineral nutrients that aid plant growth, development, and yield may lead to abiotic stress conditions. We explore the effects of excess magnesium on tomato plant metabolism, as well as tomato fruit quality using non-targeted mass spectrometry (MS)-based metabolomic approaches. Tomato plants were subjected to three different experiments, including high magnesium stress (MgH), extremely high magnesium stress (MgEH), and a control with optimal nutrient levels. Leaves, roots, and fruits were harvested at 16 weeks following the treatment. A metabolic pathway analysis showed that the metabolism induced by Mg oversupply was remarkably different between the leaf and root. Tomato plants allocated more resources to roots by upregulating carbohydrate and polyamine metabolism, while these pathways were downregulated in leaves. Mg oversupply affects the fruit metabolome in plants. In particular, the relative abundance of threonic acid, xylose, fucose, glucose, fumaric acid, malic acid, citric acid, oxoglutaric acid, threonine, glutamic acid, phenylalanine, and asparagine responsible for the flavor of tomato fruits was significantly decreased in the presence of Mg oversupply. Altogether, we concluded that Mg oversupply leads to drastically higher metabolite transport from sources (fully expanded leaves) to sinks (young leaves and roots), and thus, produces unfavorable outcomes in fruit quality and development.

11.
Metabolites ; 9(9)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527409

RESUMEN

Plant species have traditionally been revered for their unparalleled pharmacognostic applications. We outline a non-iterative multi-parallel metabolomic-cum-bioassay-guided methodology toward the functional characterization of ethanol extracts from the Betulaceae family plants (n = 10). We performed mass spectrometry (MS)-based multivariate analyses and bioassay-guided (ABTS antioxidant activity and cytoprotective effects against H2O2-induced cell damage) analyses of SPE fractions. A clearly distinct metabolomic pattern coupled with significantly higher bioactivities was observed for 40% methanol SPE eluate. Further, the 40% SPE eluate was subjected to preparative high-performance liquid chromatography (prep-HPLC) analysis, yielding 72 sub-fractions (1 min-1), with the highest antioxidant activities observed for the 15 min and 31 min sub-fractions. We simultaneously performed hyphenated-MS-based metabolite characterization of bioactive components for both the 40% methanol SPE fraction and its prep-HPLC sub-fraction (15 min and 31 min). Altogether, 19 candidate metabolites were mainly observed to contribute toward the observed bioactivities. In particular, ethyl gallate was mainly observed to affect the antioxidant activities of SPE and prep-HPLC fractions of Alnus firma extracts. We propose an integrated metabolomic-cum-bioassay-guided approach for the expeditious selection and characterization of discriminant metabolites with desired phenotypes or bioactivities.

12.
Crit Rev Biotechnol ; 39(1): 35-49, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30037282

RESUMEN

The stochasticity of Aspergillus oryzae (Trivially: the koji mold) pan-metabolomes commensurate with its ubiquitously distributed landscapes, i.e. growth matrices have been seemed uncharted since its food fermentative systems are mostly being investigated. In this review, we explicitly have discussed the likely tendencies of A. oryzae metabolomes pertaining to its growth milieu formulated with substrate matrices of varying nature, composition, texture, and associated physicochemical parameters. We envisaged typical food matrices, namely, meju, koji, and moromi as the semi-natural cultivation models toward delineating the metabolomic patterns of the koji mold, which synergistically influences the organoleptic and functional properties of the end products. Further, we highlighted how tailored conditions in sub-natural growth matrices, i.e. synthetic cultivation media blends, inducers, and growth surfaces, may influence A. oryzae metabolomes and targeted phenotypes. In general, the sequential or synchronous growth of A. oryzae on formulated matrices results in a number of metabolic tradeoffs with its immediate microenvironment influencing its adaptive and regulatory metabolomes. In broader context, evaluating the metabolic plasticity of A. oryzae relative to the tractable variables in formulated growth matrices might help approximate its growth and metabolism in the more complex natural matrices and environs. These approaches may considerably help in the design and manipulation of hybrid cultivation systems towards the efficient harnessing of commercial molds.


Asunto(s)
Aspergillus oryzae/crecimiento & desarrollo , Aspergillus oryzae/metabolismo , Fermentación , Alimentos Fermentados/microbiología , Metaboloma , Fenómenos Químicos , Medios de Cultivo/química , Grano Comestible , Metabolómica , Fenotipo , Glycine max
13.
J Microbiol Biotechnol ; 28(12): 1971-1981, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30380825

RESUMEN

In this study, we investigated the altered enzymatic activities and metabolite profiles of koji fermented using varying permutations of Aspergillus oryzae and/or Bacillus amyloliquefaciens. Notably, the protease and ß-glucosidase activities were manifold increased in co-inoculated (CO) koji samples (co-inoculation of A. oryzae and B. amyloliquefaciens). Furthermore, gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling indicates that levels of amino acids, organic acids, sugars, sugar alcohols, fatty acids, nucleosides, and vitamins were distinctly higher in CO, SA (sequential inoculation of A. oryzae, followed by B. amyloliquefaciens), and SB (sequential inoculation of B. amyloliquefaciens, followed by A. oryzae). The multivariate principal component analysis (PCA) plot based on GC-MS datasets indicated a clustered pattern for MA and MB (koji samples inoculated either with A. oryzae or B. amyloliquefaciens) across PC2 (20.0%). In contrast, the CO, SA, and SB metabolite profiles displayed segregated patterns across PLS1 (22.2%) and PLS2 (21.1%) in the partial least square discriminant analysis (PLS-DA) model. Intriguingly, the observed disparity in the levels of primary metabolites was engendered largely by higher relative levels of sugars and sugar alcohols in MA, SA, and CO koji samples, which was commensurate with the relative amylase activities in respective samples. Collectively, the present study emphasizes the utility of integrated biochemical and metabolomic approaches for achieving the optimal permutation of fermentative inocula for industrial koji preparation.


Asunto(s)
Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Fermentación , Alimentos Fermentados/análisis , Alimentos Fermentados/microbiología , Aminoácidos/análisis , Amilasas/análisis , Pruebas de Enzimas , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas , Redes y Vías Metabólicas , Metaboloma , Metabolómica , Análisis Multivariante , Nucleósidos/análisis , Péptido Hidrolasas/análisis , Análisis de Componente Principal , Alcoholes del Azúcar/análisis , Vitaminas/análisis , beta-Glucosidasa/análisis
14.
Food Chem ; 266: 161-169, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381171

RESUMEN

Untargeted metabolomics unraveled the effects of varying substrates (soybean, wheat, and rice) and inocula (Aspergillus oryzae and Bacillus amyloliquefaciens) on metabolite compositions of koji, a starter ingredient in various Asian fermented foods. Multivariate analyses of the hyphenated mass spectrometry datasets for different koji extracts highlighted 61 significantly discriminant primary metabolites (sugars and sugar alcohols, organic acids, amino acids, fatty acids, nucleosides, phenolic acids, and vitamins) according to varying substrates and inocula combinations. However, 59 significantly discriminant secondary metabolites were evident for koji-types with varying substrates only, viz., soybean (flavonoids, soyasaponins, and lysophospholipids), wheat (flavones and lysophospholipids), and rice (flavonoids, fatty acids derivatives, and lysophospholipids). Independently, the substrates influenced primary metabolite compositions in koji (soybean > wheat, rice). The inocula choice of A. oryzae engendered higher carbohydrates, organic acids, and lipid derivative levels commensurate with high α-amylase and ß-glucosidase activities, while B. amyloliquefaciens affected higher amino acids levels, in respective koji types.


Asunto(s)
Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Glycine max/metabolismo , Metabolómica , Oryza/metabolismo , Triticum/metabolismo , Aminoácidos/análisis , Carbohidratos/análisis , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/análisis , Análisis de Componente Principal , Vitaminas/análisis , alfa-Amilasas/metabolismo , beta-Glucosidasa/metabolismo
15.
J Microbiol Biotechnol ; 28(8): 1260-1269, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30301311

RESUMEN

Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.


Asunto(s)
Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Fermentación , Aromatizantes/análisis , Compuestos Orgánicos Volátiles/análisis , Antioxidantes/metabolismo , Aromatizantes/química , Cromatografía de Gases y Espectrometría de Masas , Redes y Vías Metabólicas , Metabolómica/métodos , Microextracción en Fase Sólida , Glycine max/metabolismo , Factores de Tiempo , Triticum/metabolismo , Compuestos Orgánicos Volátiles/química
16.
Molecules ; 23(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041442

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics implies that annotated metabolites can serve as potential markers of the associated bioactivities of plant extracts. Firstly, we selected Aphananthe aspera and Zelkova serrata (Family: Ulmaceae) from 16 Korean plant species based on their distinct principal component analysis (PCA) patterns in LC-MS datasets and antioxidant activity assays. Further, we chose 40% solid-phase extraction (SPE) extracts of the two species displaying the highest antioxidant activities coupled with distinct PCA patterns. Examining the metabolite compositions of the 40% SPE extracts, we observed relatively higher abundances of quercetin, kaempferol, and isorhamnetin O-glucosides for A. aspera, whereas quercetin, isorhamnetin O-glucuronides, and procyanidin dimer were relatively higher in Z. serrata. These metabolites were clearly distinguished in pathway map and displayed strong positive correlations with antioxidant activity. Further, we performed preparative high-performance liquid chromatography (prep-HPLC) analysis coupled with the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay to validate their functional correlations. As a result, quercetin O-sophoroside was determined as the main antioxidant in A. aspera, while isorhamnetin O-glucuronide and procyanidin dimer were the primary antioxidants in Z. serrata. The current study suggests that the LC-MS-based untargeted metabolomics strategy can be used to illuminate subtle metabolic disparities as well as compounds associated with bioactivities.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ulmaceae/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Descubrimiento de Drogas , Metaboloma , Metabolómica/métodos , Estructura Molecular , Espectrometría de Masas en Tándem , Ulmaceae/metabolismo
17.
Front Microbiol ; 9: 1076, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29887844

RESUMEN

Aspergillus oryzae has been commonly used to make koji, meju, and soy sauce in traditional food fermentation industries. However, the metabolic behaviors of A. oryzae during fermentation in various culture environments are largely uncharacterized. Thus, we performed time resolved (0, 4, 8, 12, 16 day) secondary metabolite profiling for A. oryzae KCCM 12698 cultivated on malt extract agar and broth (MEA and MEB) under solid-state fermentation (SSF) and submerged fermentation (SmF) conditions using the ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS) followed by multivariate analyses. We observed the relatively higher proportions of coumarins and oxylipins in SSF, whereas the terpenoids were abundant in SmF. Moreover, we investigated the antimicrobial efficacy of metabolites that were extracted from SSF and SmF. The SSF extracts showed higher antimicrobial activities as compared to SmF, with higher production rates of bioactive secondary metabolites viz., ketone-citreoisocoumarin, pentahydroxy-anthraquinone, hexylitaconic acid, oxylipins, and saturated fatty acids. The current study provides the underpinnings of a metabolomic framework regarding the growth and bioactive compound production for A. oryzae under the primarily employed industrial cultivation states. Furthermore, the study holds the potentials for rapid screening and MS-characterization of metabolites helpful in determining the consumer safety implications of fermented foods involving Koji mold.

18.
PLoS One ; 13(6): e0198739, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29879203

RESUMEN

Plants are an important and inexhaustible source of bioactive molecules in food, medicine, agriculture, and industry. In this study, we performed systematic liquid chromatography-mass spectrometry (LC-MS)-based metabolic profiling coupled with antioxidant assays for indigenous plant family extracts. Partial least-squares discriminant analysis of LC-MS datasets for the extracts of 34 plant species belonging to the families Aceraceae, Asteraceae, and Rosaceae showed that these species were clustered according to their respective phylogenies. In particular, seven Aceraceae species were clearly demarcated with higher average antioxidant activities, rationalizing their application for bioconversion studies. On the basis of further evaluation of the interspecies variability of metabolic profiles and antioxidant activities among Aceraceae family plants, we found that Acer tataricum (TA) extracts were clearly distinguished from those of other species, with a higher relative abundance of tannin derivatives. Further, we detected a strong positive correlation between most tannin derivatives and the observed higher antioxidant activities. Following Aspergillus oryzae-mediated fermentative bioconversion of Acer plant extracts, we observed a time-correlated (0-8 days) linear increase in antioxidant phenotypes for all species, with TA having the highest activity. Temporal analysis of the MS data revealed tannin bioconversion mechanisms with a relatively higher abundance of gallic acid (m/z 169) accumulated at the end of 8 days, particularly in TA. Similarly, quercetin precursor (glycoside) metabolites were also transformed to quercetin aglycones (m/z 301) in most Acer plant extracts. The present study underscores the efficacy of fermentative bioconversion strategies aimed at enhancing the quality and availability of bioactive metabolites from plant extracts.


Asunto(s)
Acer/química , Acer/metabolismo , Aspergillus oryzae/crecimiento & desarrollo , Metaboloma , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/metabolismo , Cromatografía Liquida , Ácido Gálico/química , Ácido Gálico/metabolismo , Espectrometría de Masas , Metabolómica , Quercetina/química , Quercetina/metabolismo , Taninos/química , Taninos/metabolismo
19.
Front Microbiol ; 9: 628, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670599

RESUMEN

Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1VMI: KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed "twin plate assembly." Notably, SD in S1VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1VMI < S1)7days, media pH (S1VMI > S1)7days, and biochemical characteristics viz., protease (S1VMI > S1)7days, amylase (S1VMI > nS1)3-7days , and antioxidants (S1VMI > S1)7days levels. The partial least squares-discriminant analysis (PLS-DA) of gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1VMI. Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography-mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9-11 days) sample extracts with higher oxylipins and 13-desoxypaxilline levels in S1VMI relative to S1, intertwining Aspergillus morphogenesis and secondary metabolism. The analysis of VOCs for the 7 days incubated samples displayed considerably higher accumulation of C-8 compounds in the headspace of twin-plate experimental sets (S1VMI:S2) compared to those in non-conditioned controls (S1 and S2-without respective partner strains), potentially triggering altered morpho-transformation and concurring biochemical as well as metabolic states in molds.

20.
J Agric Food Chem ; 66(11): 2694-2703, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29499610

RESUMEN

A time-correlated mass spectrometry (MS)-based metabolic profiling was performed for rice koji made using the substrates with varying degrees of milling (DOM). Overall, 67 primary and secondary metabolites were observed as significantly discriminant among different samples. Notably, a higher abundance of carbohydrate (sugars, sugar alcohols, organic acids, and phenolic acids) and lipid (fatty acids and lysophospholipids) derived metabolites with enhanced hydrolytic enzyme activities were observed for koji made with DOM of 5-7 substrates at 36 h. The antioxidant secondary metabolites (flavonoids and phenolic acid) were relatively higher in koji with DOM of 0 substrates, followed by DOM of 5 > DOM of 7 > DOM of 9 and 11 at 96 h. Hence, we conjecture that the rice substrate preprocessing between DOM of 5 and 7 was potentially optimal toward koji fermentation, with the end product being rich in distinctive organoleptic, nutritional, and functional metabolites. The study rationalizes the substrate preprocessing steps vital for commercial koji making.


Asunto(s)
Manipulación de Alimentos/métodos , Oryza/química , Aspergillus oryzae/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Fermentación , Metabolómica , Oryza/metabolismo , Oryza/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...