Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Crit Rev Biotechnol ; : 1-11, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915126

RESUMEN

The innovations and progress in genome editing/new breeding technologies have revolutionized research in the field of functional genomics and crop improvement. This revolution has expanded the horizons of agricultural research, presenting fresh possibilities for creating novel plant varieties equipped with desired traits that can effectively combat the challenges posed by climate change. However, the regulation and social acceptance of genome-edited crops still remain as major barriers. Only a few countries considered the site-directed nuclease 1 (SDN1) approach-based genome-edited plants under less or no regulation. Hence, the present review aims to comprise information on the research work conducted using SDN1 in crops by various genome editing tools. It also elucidates the promising candidate genes that can be used for editing and has listed the studies on non-transgenic crops developed through SDN1 either by Agrobacterium-mediated transformation or by ribo nucleoprotein (RNP) complex. The review also hoards the existing regulatory landscape of genome editing and provides an overview of globally commercialized genome-edited crops. These compilations will enable confidence in researchers and policymakers, across the globe, to recognize the full potential of this technology and reconsider the regulatory aspects associated with genome-edited crops. Furthermore, this compilation serves as a valuable resource for researchers embarking on the development of customized non-transgenic crops through the utilization of SDN1.

3.
Funct Integr Genomics ; 23(2): 169, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209309

RESUMEN

Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Fitomejoramiento , Basidiomycota/genética , Genotipo , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
4.
Front Plant Sci ; 13: 1035016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352858

RESUMEN

There is a significant yield reduction in the wheat crop as a result of different biotic and abiotic stresses, and changing climate, among them moisture deficit stress and leaf rust are the major ones affecting wheat worldwide. HD3086 is a high-yielding wheat variety that has been released for commercial cultivation under timely sown irrigated conditions in the Indo-Gangetic plains of India. Variety HD3086 provides a good, stable yield, and it is the choice of millions of farmers in India. It becomes susceptible to the most prevalent pathotypes 77-5 and 77-9 of Puccinia triticina (causing leaf rust) in the production environment and its potential yield cannot be realized under moisture deficit stress. The present study demonstrates the use of a marker-assisted back cross breeding approach to the successful transfer of leaf rust resistance gene Lr24 and QTLs linked to moisture deficit stress tolerance in the background of HD3086. The genotype HI1500 was used as a donor parent that possesses leaf rust-resistant gene Lr24, which confers resistance against the major pathotypes found in the production environment. It possesses inbuilt tolerance under abiotic stresses with superior quality traits. Foreground selection for gene Lr24 and moisture deficit stress tolerance QTLs linked to Canopy temperature (CT), Normal Differential Vegetation Index (NDVI) and Thousand Kernel Weight (TKW) in different generations of the backcrossing and selection. In BC2F2, foreground selection was carried out to identify homozygous lines based on the linked markers and were advanced following pedigree based phenotypic selection. The selected lines were evaluated against P. triticina pathotypes 77-5 and 77-9 under controlled conditions. Recurrent parent recovery of the selected lines ranged from 78-94%. The identified lines were evaluated for their tolerance to moisture stress under field conditions and their resistance to rust under artificial epiphytotic conditions for two years. In BC2F5 generation, eight positive lines for marker alleles were selected which showed resistance to leaf rust and recorded an improvement in component traits of moisture deficit stress tolerance such as CT, NDVI, TKW and yield compared to the recurrent parent HD3086. The derived line is named HD3471 and is nominated for national trials for testing and further release for commercial cultivation.

5.
Front Genet ; 13: 1034947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338980

RESUMEN

Wheat is the staple food crop of global importance for its grain nutrient quality. Grain iron and zinc content of the wheat grain is an important quantitatively inherited trait that is influenced by the environmental factors such as drought and heat stress. Phenotypic evaluation of 295 advanced breeding lines from the wheat stress breeding program of IARI was carried out under timely sown irrigated (IR), restricted irrigated, and late-sown conditions at New Delhi during the cropping season of 2020-21, and grain iron (GFeC) and zinc (GZnC) contents were estimated from both control and treatments. A statistically significant increase in GFeC and GZnC was observed under stress conditions compared to that of the control. Genotyping was carried out with the SNPs from the 35K Axiom Breeder's array, and marker-trait association was identified by GWAS analysis. Of the 23 MTAs identified, seven were linked with GFeC and sixteen were linked with GZnC. In silico analysis revealed a few important transcripts involved in various plant metabolism, growth, and development activities such as auxin response factor, root UVB sensitive proteins, potassium transporter, glycosyl transferase, COBRA, and F-box-like domain. The identified MTAs can be used for molecular breeding after validation and also for rapid development of micronutrient-rich varieties of wheat to mitigate hidden hunger.

6.
Dalton Trans ; 51(27): 10486-10500, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35766149

RESUMEN

Metal oxide catalysts are known to trigger C-H bond activation selectively, indicating their suitability for olefin epoxidation. Nano-structured Co3O4 supported on TiO2 was prepared for selective epoxidation of a number of olefins under optimized reaction conditions. An appropriate synthetic procedure yielded a catalytic material (Co-Ti (NP)HT) with desired crystal size and interface conditions. Incorporation of Co into the Ti matrix resulted in an enhancement in the specific surface of Ti-Co nanoparticles (77.93 m2 g-1). XPS measurements evaluated the surface cobalt atom concentration (5.77%) in Ti-Co(NP)HT, indicating more dispersion of cobalt oxide species. Catalytic application of the material, using various olefins (under optimized reaction conditions) shows higher conversion (>85%) in a 6-h time interval. The substrate : oxidant (H2O2) concentration in an optimized molar ratio of 1 : 2 shows high olefin conversion for the formation of olefin oxide. The reactivity of olefins was found to be in the order: cyclohexene > methylstyrene > styrene > chlorostyrene > p-nitrostyrene. A DFT model compared the HOMO-LUMO energies of styrene and its substituted forms. The reusability of Ti-Co (NP)HT tested up to four continuous cycles of batch operations indicates a negligible loss (0.25-0.30%) of catalytic activity.

7.
Cereal Res Commun ; 50(4): 573-601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34642509

RESUMEN

Abstract: Rice-wheat cropping system, intensively followed in Indo-Gangetic plains (IGP), played a prominent role in fulfilling the food grains demand of the increasing population of South Asia. In northern Indian plains, some practices such as intensive rice cultivation with traditional method for long-term have been associated with severe deterioration of natural resources, declining factor productivity, multiple nutrients deficiencies, depleting groundwater, labour scarcity and higher cost of cultivation, putting the agricultural sustainability in question. Varietal development, soil and water management, and adoption of resource conservation technologies in rice cultivation are the key interventions areas to address these challenges. The cultivation of lesser water requiring crops, replacing rice in light-textured soil and rainfed condition, should be encouraged through policy interventions. Direct seeding of short duration, high-yielding and stress tolerant rice varieties with water conservation technologies can be a successful approach to improve the input use efficiency in rice cultivation under medium-heavy-textured soils. Moreover, integrated approach of suitable cultivars for conservation agriculture, mechanized transplanting on zero-tilled/unpuddled field and need-based application of water, fertilizer and chemicals might be a successful approach for sustainable rice production system in the current scenario. In this review study, various challenges in productivity and sustainability of rice cultivation system and possible alternatives and solutions to overcome such challenges are discussed in details.

8.
Front Plant Sci ; 12: 692252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489995

RESUMEN

Understanding the physiological mechanism of tolerance under stress conditions is an imperative aspect of the crop improvement programme. The role of plant hormones is well-established in abiotic stress tolerance. However, the information on the role of gibberellic acid (GA) in abiotic stress tolerance in late sown wheat is still not thoroughly explored. Thus, we aimed to investigate the role of endogenous GA3 level in stress tolerance in contrasting wheat cultivars, viz., temperature-tolerant (HD 2643 and DBW 14) and susceptible (HD 2189 and HD 2833) cultivars under timely and late sown conditions. We created the variation in endogenous GA3 level by exogenous spray of GA3 and its biosynthesis inhibitor paclobutrazol (PBZ). Tolerant genotypes had higher antioxidant enzyme activity, membrane stability, and photosynthesis rate, lower lipid peroxidase activity, and better growth and yield traits under late sown conditions attributed to H2O2 content. Application of PBZ escalated antioxidant enzymes activity and photosynthesis rate, and reduced the lipid peroxidation and ion leakage in stress, leading to improved thermotolerance. GA3 had a non-significant effect on antioxidant enzyme activity, lipid peroxidation, and membrane stability. However, GA3 application increased the test weight in HD 2643 and HD 2833 under timely and late sown conditions. GA3 upregulated GA biosynthesis and degradation pathway genes, and PBZ downregulated kaurene oxidase and GA2ox gene expression. GA3 also upregulated the expression of the cell expansins gene under both timely and late sown conditions. Exogenous GA3 did not increase thermotolerance but positively affected test weight and cell expansins gene expression. No direct relationship existed between endogenous GA3 content and stress tolerance traits, indicating that PBZ could have conferred thermotolerance through an alternative mechanism instead of inhibiting GA3biosynthesis.

9.
Sci Rep ; 11(1): 18805, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552117

RESUMEN

The intercropping of legumes with cereals help to achieve sustainable intensification by their mutual complementarity at efficiently using radiation, nutrients, etc. Several studies indicated such beneficial effects on the other component crop however, little research has been conducted to quantify their effects on the subsequent crop in a cropping system. In this study, the effect of the legume intercropping on the entire cropping system, particularly the maize + legume-wheat system was studied. Four legumes intercropped to maize followed by wheat crop were studied for intensification measures such as wheat equivalent yield (WEY), land equivalent ratio (LER), sustainable value index (SVI), and economic returns. N saving effect of legumes on the subsequent wheat crop was quantified with two N levels. Maize + cowpea-wheat combination was the most productive and economic intercrop combination (LER = 1.71, SVI = 0.96) with an increase in net economic return (43.63%) with a B:C ratio of 1.94. An additional 25% N (37.5 kg ha-1) was saved in the wheat crop when the legume intercropping was undertaken with maize. The results suggest that intercropping is the key to diversification and reduces the risk of crop failures by enhancing land-use efficiency, soil fertility, and economic returns under weather vagaries. This will be beneficial to small and marginal farmers of many countries.

10.
Rice (N Y) ; 14(1): 49, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34089405

RESUMEN

We report here the genome-wide changes resulting from low N (N-W+), low water (N+W-)) and dual stresses (N-W-) in root and shoot tissues of two rice genotypes, namely, IR 64 (IR64) and Nagina 22 (N22), and their association with the QTLs for nitrogen use efficiency. For all the root parameters, except for root length under N-W+, N22 performed better than IR64. Chlorophyll a, b and carotenoid content were higher in IR64 under N+W+ treatment and N-W+ and N+W- stresses; however, under dual stress, N22 had higher chlorophyll b content. While nitrite reductase, glutamate synthase (GS) and citrate synthase assays showed better specific activity in IR64, glutamate dehydrogenase showed better specific activity in N22 under dual stress (N-W-); the other N and C assimilating enzymes showed similar but low specific activities in both the genotypes. A total of 8926 differentially expressed genes (DEGs) were identified compared to optimal (N+W+) condition from across all treatments. While 1174, 698 and 903 DEGs in IR64 roots and 1197, 187 and 781 in N22 roots were identified, nearly double the number of DEGs were found in the shoot tissues; 3357, 1006 and 4005 in IR64 and 4004, 990 and 2143 in N22, under N-W+, N+W- and N-W- treatments, respectively. IR64 and N22 showed differential expression in 15 and 11 N-transporter genes respectively, under one or more stress treatments, out of which four showed differential expression also in N+W- condition. The negative regulators of N- stress, e.g., NIGT1, OsACTPK1 and OsBT were downregulated in IR64 while in N22, OsBT was not downregulated. Overall, N22 performed better under dual stress conditions owing to its better root architecture, chlorophyll and porphyrin synthesis and oxidative stress management. We identified 12 QTLs for seed and straw N content using 253 recombinant inbred lines derived from IR64 and N22 and a 5K SNP array. The QTL hotspot region on chromosome 6 comprised of 61 genes, of which, five were DEGs encoding for UDP-glucuronosyltransferase, serine threonine kinase, anthocyanidin 3-O-glucosyltransferase, and nitrate induced proteins. The DEGs, QTLs and candidate genes reported in this study can serve as a major resource for both rice improvement and functional biology.

11.
Front Plant Sci ; 12: 570408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643338

RESUMEN

Wheat variety PBW343, released in India in 1995, became the most widely grown cultivar in the country by the year 2000 owing to its wide adaptability and yield potential. It initially succumbed to leaf rust, and resistance genes Lr24 and Lr28 were transferred to PBW343. After an unbroken reign of about 10 years, the virulence against gene Yr27 made PBW343 susceptible to stripe rust. Owing to its wide adaptability and yield potential, PBW343 became the prime target for marker-assisted introgression of stripe rust resistance genes. The leaf rust-resistant versions formed the base for pyramiding stripe rust resistance genes Yr5, Yr10, Yr15, Yr17, and Yr70, in different introgression programs. Advanced breeding lines with different gene combinations, PBW665, PBW683, PBW698, and PBW703 were tested in national trials but could not be released as varieties. The genes from alien segments, Aegilops ventricosa (Lr37/Yr17/Sr38) and Aegilops umbellulata (Lr76/Yr70), were later pyramided in PBW343. Modified marker-assisted backcross breeding was performed, and 81.57% of the genetic background was recovered in one of the selected derivative lines, PBW723. This line was evaluated in coordinated national trials and was released for cultivation under timely sown irrigated conditions in the North Western Plain Zone of India. PBW723 yields an average of 58.0 qtl/ha in Punjab with high potential yields. The genes incorporated are susceptible to stripe rust individually, but PBW723 with both genes showed enhanced resistance. Three years post-release, PBW723 occupies approximately 8-9% of the cultivated area in the Punjab state. A regular inflow of diverse resistant genes, their rapid mobilization to most productive backgrounds, and keeping a close eye on pathogen evolution is essential to protect the overall progress for productivity and resistance in wheat breeding, thus helping breeders to keep pace with pathogen evolution.

12.
Plant Dis ; 105(7): 1992-2000, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33439038

RESUMEN

Wheat is the second most cultivated cereal crop in the world and is an important crop in India. Leaf (brown) rust, caused by Puccinia triticina, was the most prevalent among the three rusts found in all the wheat-growing areas of India, Bhutan, and Nepal during 2016 to 2019. Leaf rust samples from wheat crops in these countries were pathotyped using the wheat differential genotypes and binomial Indian system of nomenclature. To facilitate international communication, each pathotype identified was also tested using the North American differentials. A total of 33 pathotypes were identified from 1,086 samples, including three new pathotypes: 61R47 (162-5 = KHTPM) and 93R49 (49 = NHKTN) from India and 93R57 (20-1 = NHKTN) from Nepal. Two pathotypes, 121R60-1 (77-9/52 = MHTKL) and 121R63-1 (77-5 = THTTM), accounted for 79.46% of the population. Virulence on Lr19 was identified in 0.27% of the samples from Nepal only. The proportion of pathotype 121R60-1 (77-9 = MHTKL) increased to 57.55% during these years. Virulence was not observed on Lr9, Lr24, Lr25, Lr28, Lr32, Lr39, Lr45, and Lr47 in the population of the Indian subcontinent. Eighteen polymorphic simple sequence repeat (SSR) primer pairs tested on the isolates amplified 48 alleles with an average of 2.66 alleles per primer pair. Based on SSR genotyping, these pathotypes could be grouped into two clades with another two subclades each. Many of the Lr genes present in Indian wheat germplasm (Lr1, Lr3a, Lr10, Lr11, Lr14a, Lr15, Lr16, Lr17, Lr20, Lr23, and Lr26) were ineffective for a majority of pathotypes. Most of these varieties possessed a high degree of leaf rust resistance. The field resistance of wheat varieties could be attributed to the interaction of genes, unknown resistance, or adult plant resistance.


Asunto(s)
Basidiomycota , Triticum , Basidiomycota/genética , Enfermedades de las Plantas , Puccinia , Triticum/genética , Virulencia
13.
Sci Rep ; 11(1): 2210, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500485

RESUMEN

Salt stress adversely affects the global wheat production and productivity. To improve salinity tolerance of crops, identification of robust molecular markers is highly imperative for development of salt-tolerant cultivars to mimic yield losses under saline conditions. In this study, we mined 171 salt-responsive genes (including 10 miRNAs) from bread wheat genome using the sequence information of functionally validated salt-responsive rice genes. Salt-stress, tissue and developmental stage-specific expression analysis of RNA-seq datasets revealed the constitutive as well as the inductive response of salt-responsive genes in different tissues of wheat. Fifty-four genotypes were phenotyped for salt stress tolerance. The stress tolerance index of the genotypes ranged from 0.30 to 3.18. In order to understand the genetic diversity, candidate gene based SSRs (cg-SSRs) and MIR gene based SSRs (miR-SSRs) were mined from 171 members of salt-responsive genes of wheat and validated among the contrasting panels of 54 tolerant as well as susceptible wheat genotypes. Among 53 SSR markers screened, 10 cg-SSRs and 8 miR-SSRs were found to be polymorphic. Polymorphic information content between the wheat genotypes ranged from 0.07 to 0.67, indicating the extant of wide genetic variation among the salt tolerant and susceptible genotypes at the DNA level. The genetic diversity analysis based on the allelic data grouped the wheat genotypes into three separate clusters of which single group encompassing most of the salt susceptible genotypes and two of them containing salt tolerance and moderately salt tolerance wheat genotypes were in congruence with penotypic data. Our study showed that both salt-responsive genes and miRNAs based SSRs were more diverse and can be effectively used for diversity analysis. This study reports the first extensive survey on genome-wide analysis, identification, development and validation of salt-responsive cg-SSRs and miR-SSRs in wheat. The information generated in the present study on genetic divergence among genotypes having a differential response to salt will help in the selection of suitable lines as parents for developing salt tolerant cultivars in wheat.


Asunto(s)
Estudios de Asociación Genética , Repeticiones de Microsatélite/genética , Cloruro de Sodio/farmacología , Triticum/genética , Alelos , Pan , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , Filogenia , Polimorfismo Genético , ARN de Planta/genética , ARN de Planta/metabolismo , Reproducibilidad de los Resultados , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Semillas/genética , Estrés Fisiológico/genética , Factores de Tiempo
14.
Front Plant Sci ; 12: 820761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222455

RESUMEN

Spike fertility and associated traits are key factors in deciding the grain yield potential of wheat. Genome-wide association study (GWAS) interwoven with advanced post-GWAS analysis such as a genotype-phenotype network (geno-pheno network) for spike fertility, grain yield, and associated traits allow to identify of novel genomic regions and represents attractive targets for future marker-assisted wheat improvement programs. In this study, GWAS was performed on 200 diverse wheat genotypes using Breeders' 35K Axiom array that led to the identification of 255 significant marker-trait associations (MTAs) (-log10P ≥ 3) for 15 metric traits phenotyped over three consecutive years. MTAs detected on chromosomes 3A, 3D, 5B, and 6A were most promising for spike fertility, grain yield, and associated traits. Furthermore, the geno-pheno network prioritised 11 significant MTAs that can be utilised as a minimal marker system for improving spike fertility and yield traits. In total, 119 MTAs were linked to 81 candidate genes encoding different types of functional proteins involved in various key pathways that affect the studied traits either way. Twenty-two novel loci were identified in present GWAS, twelve of which overlapped by candidate genes. These results were further validated by the gene expression analysis, Knetminer, and protein modelling. MTAs identified from this study hold promise for improving yield and related traits in wheat for continued genetic gain and in rapidly evolving artificial intelligence (AI) tools to apply in the breeding program.

15.
Nat Food ; 2(10): 819-827, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37117978

RESUMEN

The effective utilization of natural variation has become essential in addressing the challenges that climate change and population growth pose to global food security. Currently adopted protracted approaches to introgress exotic alleles into elite cultivars need substantial transformation. Here, through a strategic three-way crossing scheme among diverse exotics and the best historical elites (exotic/elite1//elite2), 2,867 pre-breeding lines were developed, genotyped and screened for multiple agronomic traits in four mega-environments. A meta-genome-wide association study, selective sweeps and haplotype-block-based analyses unveiled selection footprints in the genomes of pre-breeding lines as well as exotic-specific associations with agronomic traits. A simulation with a neutrality assumption demonstrated that many pre-breeding lines had significant exotic contributions despite substantial selection bias towards elite genomes. National breeding programmes worldwide have adopted 95 lines for germplasm enhancement, and 7 additional lines are being advanced in varietal release trials. This study presents a great leap forwards in the mobilization of GenBank variation to the breeding pipelines.

16.
J Food Prot ; 84(5): 767-771, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290555

RESUMEN

ABSTRACT: This study was conducted to evaluate the efficacy of seven decontamination processes in reducing the pesticide mixture load of six insecticides (quinalphos, profenophos, ethion, lambda-cyhalothrin, imidacloprid, and acetamiprid) from chili (Capsicum annuum L.). In the control treatment, the pesticide residues were extracted without following any decontamination procedure. The extraction of the insecticides from chili was initiated after 48 h of pesticide mixture spray and was done using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. The quantitative analysis of four insecticides, namely quinalphos, profenophos, ethion, and lambda-cyhalothrin, was done by coupled gas chromatography-electron capture detection and that of imidacloprid and acetamiprid by high-performance liquid chromatography-UV detection. The results depicted reduction of pesticide residues in all the decontamination treatments compared with the control, although it varied for different insecticides. Solutions of 1 and 5% NaCl and 5% CH3COOH served as efficient decontaminants in removal of quinalphos, profenophos, ethion, and lambda-cyhalothrin residues from chili to ca. 90%, whereas for imidacloprid and acetamiprid there was a mild decontamination only (33.33 to 52.44%). The solutions of 5% NaHCO3 and 0.01% KMnO4 were effective only in removing lambda-cyhalothrin residues from the chili crop, but for all other pesticides the decontamination was not much pronounced.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Plaguicidas , Cromatografía Líquida de Alta Presión , Descontaminación , Residuos de Plaguicidas/análisis , Plaguicidas/análisis
17.
medRxiv ; 2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-33173916

RESUMEN

INTRODUCTION: Centhaquine (Lyfaquin ® ) showed significant safety and efficacy in preclinical and clinical phase I and II studies. METHODS: A prospective, multicentric, randomized phase III study was conducted in patients with hypovolemic shock having systolic blood pressure (SBP) of ≤90 mm Hg and blood lactate levels of ≥2 mmol/L. Patients were randomized in a 2:1 ratio, 71 patients to the centhaquine group and 34 patients to the control (saline) group. Every patient received standard of care (SOC) and was followed for 28 days. The study drug (normal saline or centhaquine (0.01 mg/kg)) was administered in 100 mL of normal saline infusion over 1 hour. The primary objectives were to determine changes (mean through 48 hours) in SBP, diastolic blood pressure (DBP), blood lactate levels, and base deficit. The secondary objectives included the amount of fluids, blood products, vasopressors administered in the first 48 hours, duration of hospital stay, time in ICU, time on the ventilator support, change in patient's Acute Respiratory Distress Syndrome (ARDS), Multiple Organ Dysfunction Syndrome (MODS) scores, and the proportion of patients with 28-day all-cause mortality. RESULTS: The demographics of patients and baseline vitals in both groups were comparable. Trauma was the cause of hypovolemic shock in 29.41% of control and 47.06% of centhaquine, gastroenteritis in 44.12% of control, and 29.41% of centhaquine patients. An equal amount of fluids and blood products were administered in both groups during the first 48 hours of resuscitation. A lesser amount of vasopressors was needed in the first 48 hours of resuscitation in the centhaquine group. An increase in SBP from the baseline was consistently higher in the centhaquine group than in the control. A significant increase in pulse pressure in the centhaquine group than the control group suggests improved stroke volume due to centhaquine. The shock index was significantly lower in the centhaquine group than control from 1 hour (p=0.0320) till 4 hours (p=0.0494) of resuscitation. Resuscitation with centhaquine had a significantly greater number of patients with improved blood lactate and the base deficit than the control group. ARDS and MODS improved with centhaquine, and an 8.8% absolute reduction in 28-day all-cause mortality was observed in the centhaquine group. CONCLUSION: Centhaquine is a highly efficacious resuscitative agent for treating hypovolemic shock. The efficacy of centhaquine in distributive shock due to sepsis and COVID-19 is being explored. TRIAL REGISTRATION: Clinical Trials Registry, India; ctri.icmr.org.in, CTRI/2019/01/017196; clinicaltrials.gov, NCT04045327 . KEY SUMMARY POINTS: A multicentric, randomized, controlled trial was conducted to evaluate the efficacy of centhaquine in hypovolemic shock patients.One hundred and five patients were randomized 2:1 to receive centhaquine or saline. Centhaquine was administered at a dose of 0.01 mg/kg in 100 mL saline and infused over 1 hour. The control group received 100 mL of saline over a 1-hour infusion.Centhaquine improved blood pressure, shock index, reduced blood lactate levels, and improved base deficit. Acute Respiratory Distress Syndrome (ARDS) and Multiple Organ Dysfunction Syndrome (MODS) score improved with centhaquine.An 8.8% absolute reduction in 28-day all-cause mortality was observed in the centhaquine group. There were no drug-related adverse events in the study.

18.
Mol Biol Rep ; 47(1): 293-306, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31630318

RESUMEN

Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder's Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon's information index (I) = 0.648, expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.


Asunto(s)
Triticum/genética , Triticum/metabolismo , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Grano Comestible/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Fenotipo , Fitomejoramiento/métodos , Poaceae/genética , Polimorfismo de Nucleótido Simple/genética
19.
Int J Artif Organs ; 43(6): 372-378, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31868078

RESUMEN

INTRODUCTION: Sepsis results in immunologic disturbances with the release of various inflammatory mediators such as cytokines. Cytokines can damage the cells, and the continuous release of inflammatory mediators leads to severely impaired immunity. Therefore, the reduction in cytokine levels by hemoadsorption represents a new concept for blood purification. CytoSorb® as a hemoadsorption device is a detoxification system, which aims to decrease the cytokines levels. This study was conducted to understand any beneficial effects of CytoSorb® therapy in septic patients. METHODOLOGY: This was a retrospective and observational study, approved by the scientific and ethics committee of Max Super Specialty Hospital, Patparganj, Delhi, India and conducted in compliance with current International Council for Harmonization, Good Clinical Practice, Schedule Y, and Indian Council of Medical Research guidelines. Subjects of either gender (age > 18 year) were included in the study. The data were presented as mean ± standard deviation and categorical as frequency and percentage (%). A p value less than 0.05 (p < 0.05) was considered to be statistically significant. RESULTS: A total number of 36 patients were included in the study. Majority of the patients were male with mean age (56.36 ± 14.83). After therapy, procalcitonin and total leucocyte count levels decreased within 24 h. Post therapy, sepsis-related organ failure assessment (SOFA) score of Day (D)1, D2, and D3 reduced to 10.4 ± 3.63, 8.7 ± 4.02, and 7.8 ± 3.67, respectively. The Acute Physiology and Chronic Health Evaluation (APACHE) II score and predicted mortality were lower in the survivor group as compared to the non-survivor group. CONCLUSION: Hemoadsorption using the extracorporeal adsorption device (CytoSorb®) might be an effective rescue therapy in stabilizing septic shock patients.


Asunto(s)
Citocinas/sangre , Hemoperfusión/métodos , Choque Séptico/terapia , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Estudios Retrospectivos , Choque Séptico/sangre , Resultado del Tratamiento
20.
Sci Rep ; 9(1): 13917, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558740

RESUMEN

Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.


Asunto(s)
Sequías , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Transcriptoma , Triticum/genética , Estudio de Asociación del Genoma Completo/normas , Mutación INDEL , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , RNA-Seq , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...