Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35066976

RESUMEN

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Streptococcus pneumoniae , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Etidio/metabolismo , Hidrólisis , Nucleótidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
2.
Commun Biol ; 4(1): 1379, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887543

RESUMEN

The ABC multidrug exporter MsbA mediates the translocation of lipopolysaccharides and phospholipids across the plasma membrane in Gram-negative bacteria. Although MsbA is structurally well characterised, the energetic requirements of lipid transport remain unknown. Here, we report that, similar to the transport of small-molecule antibiotics and cytotoxic agents, the flopping of physiologically relevant long-acyl-chain 1,2-dioleoyl (C18)-phosphatidylethanolamine in proteoliposomes requires the simultaneous input of ATP binding and hydrolysis and the chemical proton gradient as sources of metabolic energy. In contrast, the flopping of the large hexa-acylated (C12-C14) Lipid-A anchor of lipopolysaccharides is only ATP dependent. This study demonstrates that the energetics of lipid transport by MsbA is lipid dependent. As our mutational analyses indicate lipid and drug transport via the central binding chamber in MsbA, the lipid availability in the membrane can affect the drug transport activity and vice versa.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Metabolismo Energético , Lactococcus lactis/metabolismo , Metabolismo de los Lípidos , Transporte Biológico , Escherichia coli/genética
3.
Commun Biol ; 4(1): 558, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976372

RESUMEN

Multidrug and toxic compound extrusion (MATE) transport proteins confer multidrug resistance on pathogenic microorganisms and affect pharmacokinetics in mammals. Our understanding of how MATE transporters work, has mostly relied on protein structures and MD simulations. However, the energetics of drug transport has not been studied in detail. Many MATE transporters utilise the electrochemical H+ or Na+ gradient to drive substrate efflux, but NorM-VC from Vibrio cholerae can utilise both forms of metabolic energy. To dissect the localisation and organisation of H+ and Na+ translocation pathways in NorM-VC we engineered chimaeric proteins in which the N-lobe of H+-coupled NorM-PS from Pseudomonas stutzeri is fused to the C-lobe of NorM-VC, and vice versa. Our findings in drug binding and transport experiments with chimaeric, mutant and wildtype transporters highlight the versatile nature of energy coupling in NorM-VC, which enables adaptation to fluctuating salinity levels in the natural habitat of V. cholerae.


Asunto(s)
Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Vibrio cholerae/metabolismo , Antiportadores/fisiología , Proteínas Bacterianas/fisiología , Sitios de Unión , Transporte Biológico , Resistencia a Múltiples Medicamentos/genética , Resistencia a Múltiples Medicamentos/fisiología , Hidrógeno/química , Hidrógeno/metabolismo , Iones/metabolismo , Proteínas de Transporte de Catión Orgánico/fisiología , Unión Proteica , Sodio/química , Sodio/metabolismo , Vibrio cholerae/fisiología
4.
Sci Rep ; 10(1): 20026, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208856

RESUMEN

Multidrug transporters can confer drug resistance on cells by extruding structurally unrelated compounds from the cellular interior. In transport assays, Hoechst 33342 (referred to as Hoechst) is a commonly used substrate, the fluorescence of which changes in the transport process. With three basic nitrogen atoms that can be protonated, Hoechst can exist as cationic and neutral species that have different fluorescence emissions and different abilities to diffuse across cell envelopes and interact with lipids and intracellular nucleic acids. Due to this complexity, the mechanism of Hoechst transport by multidrug transporters is poorly characterised. We investigated Hoechst transport by the bacterial major facilitator superfamily multidrug-proton antiporter LmrP in Lactococcus lactis and developed a novel assay for the direct quantitation of cell-associated Hoechst. We observe that changes in Hoechst fluorescence in cells do not always correlate with changes in the amount of Hoechst. Our data indicate that chemical proton gradient-dependent efflux by LmrP in cells converts populations of highly fluorescent, membrane-intercalated Hoechst in the alkaline interior into populations of less fluorescent, cell surface-bound Hoechst in the acidic exterior. Our methods and findings are directly relevant for the transport of many amphiphilic antibiotics, antineoplastic agents and cytotoxic compounds that are differentially protonated within the physiological pH range.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Resistencia a Múltiples Medicamentos , Lactococcus lactis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Protones , Proteínas Bacterianas/genética , Transporte Biológico , Membrana Celular/efectos de los fármacos , Lactococcus lactis/efectos de los fármacos , Lactococcus lactis/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Mutagénesis Sitio-Dirigida , Mutación
5.
Res Microbiol ; 170(8): 392-398, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31442612

RESUMEN

Multidrug transporters are important and interesting molecular machines that extrude a wide variety of cytotoxic drugs from target cells. This review summarizes novel insights in the energetics and mechanisms of bacterial ATP-binding cassette multidrug transporters as well as recent advances connecting multidrug transport to ion and lipid translocation processes in other membrane proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Bacterias/metabolismo , Farmacorresistencia Bacteriana Múltiple/fisiología , Metabolismo Energético/fisiología , Adenosina Trifosfato/metabolismo , Antibacterianos/farmacología , Transporte Biológico/fisiología , Conformación Proteica
6.
Sci Adv ; 4(9): eaas9365, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255140

RESUMEN

LmrA is a bacterial ATP-binding cassette (ABC) multidrug exporter that uses metabolic energy to transport ions, cytotoxic drugs, and lipids. Voltage clamping in a Port-a-Patch was used to monitor electrical currents associated with the transport of monovalent cationic HEPES+ by single-LmrA transporters and ensembles of transporters. In these experiments, one proton and one chloride ion are effluxed together with each HEPES+ ion out of the inner compartment, whereas two sodium ions are transported into this compartment. Consequently, the sodium-motive force (interior negative and low) can drive this electrogenic ion exchange mechanism in cells under physiological conditions. The same mechanism is also relevant for the efflux of monovalent cationic ethidium, a typical multidrug transporter substrate. Studies in the presence of Mg-ATP (adenosine 5'-triphosphate) show that ion-coupled HEPES+ transport is associated with ATP-bound LmrA, whereas ion-coupled ethidium transport requires ATP binding and hydrolysis. HEPES+ is highly soluble in a water-based environment, whereas ethidium has a strong preference for residence in the water-repelling plasma membrane. We conclude that the mechanism of the ABC transporter LmrA is fundamentally related to that of an ion antiporter that uses extra steps (ATP binding and hydrolysis) to retrieve and transport membrane-soluble substrates from the phospholipid bilayer.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Farmacorresistencia Bacteriana , Etidio/farmacocinética , HEPES/farmacocinética , Concentración de Iones de Hidrógeno , Lactobacillus/efectos de los fármacos , Lactobacillus/metabolismo , Membrana Dobles de Lípidos/metabolismo , Magnesio/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Técnicas de Placa-Clamp , Fosfolípidos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sodio/metabolismo
7.
Sci Rep ; 6: 38052, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917857

RESUMEN

The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catalyses drug efflux in a membrane potential and chemical proton gradient-dependent fashion. To enable the interaction with protons and cationic substrates, LmrP contains catalytic carboxyl residues on the surface of a large interior chamber that is formed by transmembrane helices. These residues co-localise together with polar and aromatic residues, and are predicted to be present in two clusters. To investigate the functional role of the catalytic carboxylates, we generated mutant proteins catalysing membrane potential-independent dye efflux by removing one of the carboxyl residues in Cluster 1. We then relocated this carboxyl residue to six positions on the surface of the interior chamber, and tested for restoration of wildtype energetics. The reinsertion at positions towards Cluster 2 reinstated the membrane potential dependence of dye efflux. Our data uncover a remarkable plasticity in proton interactions in LmrP, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport.


Asunto(s)
Proteínas Bacterianas/química , Ácidos Carboxílicos/metabolismo , Lactococcus lactis/enzimología , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cationes/metabolismo , Lactococcus lactis/química , Lactococcus lactis/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Estructura Secundaria de Proteína , Protones
8.
Nat Commun ; 7: 12387, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27499013

RESUMEN

ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Protones , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Transporte Biológico/efectos de los fármacos , Cloranfenicol/farmacología , Electroquímica , Etidio/metabolismo , Hidrólisis , Iones , Proteolípidos/metabolismo , Especificidad por Sustrato/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA