Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 33(12): 125101, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463528

RESUMEN

We report results from the molecular dynamics simulations of a binary colloidal mixture subjected to an external potential barrier along one of the spatial directions at low volume fraction, ϕ = 0.2. The variations in the asymmetry of the external potential barrier do not change the dynamics of the smaller particles, showing Arrhenius diffusion. However, the dynamics of the larger particles shows a crossover from sub-Arrhenius to super-Arrhenius diffusion with the asymmetry in the external potential at the low temperatures and low volume fraction. Super-Arrhenius diffusion is generally observed in the high density systems where the transient cages are present due to dense packing, e.g., supercooled liquids, jammed systems, diffusion through porous membranes, dynamics within the cellular environment, etc. This model can be applied to study the molecular transport across cell membranes, nano-, and micro-channels which are characterized by spatially asymmetric potentials.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33326937

RESUMEN

We report results from the molecular dynamics simulations of a binary colloidal mixture subjected to an external potential barrier along one of the spatial directions at low volume fraction, $\phi=$ 0.2. The variations in the asymmetry of the external potential barrier do not change the dynamics of the smaller particles, showing Arrhenius diffusion. However, the dynamics of the larger particles shows a crossover from sub-Arrhenius to super-Arrhenius diffusion with the asymmetry in the external potential at the low temperatures and low volume fraction. Super-Arrhenius diffusion is generally observed in the high density systems where the transient cages are present due to dense packing, e.g., supercooled liquids, jammed systems, diffusion through porous membranes, dynamics within the cellular environment, etc. This model can be applied to study the molecular transport across cell membranes, nano-, and micro-channels which are characterised by spatially asymmetric potentials.

3.
J Phys Condens Matter ; 33(5)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32977320

RESUMEN

Molecular dynamics simulations are performed on a system of model linear polymers to look at the violations of Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations near the mode coupling theory transition temperatureTcat three (one higher and two lower) densities. At low temperatures, both lower density systems show stable gas-supercooled-liquid coexistence whereas the higher density system is homogeneous. We show that monomer density relaxation exhibits SE violation for all three densities, whereas molecular density relaxation shows a weak violation of the SE relation nearTcin both lower density systems. This study identifies disparity in monomer mobility and observation of jumplike motion in the typical monomer trajectories resulting in the SE violations. In addition to the SE violation, a weak SED violation is observed in the gas-supercooled-liquid coexisting domains of the lower densities. Both lower density systems also show a decoupling of translational and rotational dynamics in this polymer system.

4.
Phys Rev E ; 101(2-1): 022606, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168638

RESUMEN

We present results from Langevin dynamics simulations of a glassy active-passive mixture of soft-repulsive binary colloidal disks. Activity on the smaller particles is applied according to the quorum sensing scheme, in which a smaller particle will be active for a persistence time if its local nearest neighbors are equal to or greater than a certain threshold value. We start with a passive glassy state of the system and apply activity to the smaller particles, which shows a nonmonotonous glassy character of the active particles with the persistence time of the active force, from its passive limit (zero activity). On the other hand, passive particles of the active-passive mixture phase separate at the intermediate persistence time of the active force, resulting in the hexatic-liquid and solid-liquid phases. Thus, our system shows three regimes as active glass, phase separation, and active liquid, as the persistence time increases from its smaller values. We show that the solidlike and hexatic phases consisting of passive large particles are stable due to the smaller momentum transfer from active to passive particles, compared to the higher persistence time where the positional and orientational ordering vanishes. Our model is relevant to active biological systems, where glassy dynamics is present, e.g., bacterial cytoplasm, biological tissues, dense quorum sensing bacteria, and synthetic smart amorphous glasses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...