Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542287

RESUMEN

The encounter between dental biofilm and neutrophils in periodontitis remains elusive, although it apparently plays a crucial role in the periodontal pathology and constitutes a key topic of periodontology. Dental biofilm and neutrophils were isolated from orally healthy persons and patients with periodontitis. We investigated biofilm and its particle-shedding phenomenon with electron microscopy and nanoparticle tracking analysis (NTA); biofilm shedding-neutrophil interactions were examined ex vivo with epi-fluorescence microscopy. For this purpose, we used acellular dental biofilm shedding, purified lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA) as activators, and the interleukin 8 receptor beta (CXCR2) inhibitor and the anti-interleukin 8 receptor alpha (CXCR1) antibody as modulators. The shedding of acellular dental biofilms overwhelmingly consists of bacterial extracellular vesicles (BEVs). The latter induced the moderate formation of neutrophil extracellular traps (NETs) in orally healthy subjects and a strong formation in patients with periodontitis. A CXCR2 inhibitor and an anti-CXCR1 antibody had a minor effect on NET formation. Neutrophils from patients with periodontitis exhibited NET hyper-responsiveness. BEVs were stronger inducers of NET formation than purified LPS and PMA. A plateau of neutrophil responsiveness is reached above the age of 40 years, indicating the abrupt switch of maladaptive trained immunity (TI) into the activated modus. Our results suggest that dental biofilms consist of and disseminate immense amounts of outer membrane vesicles (OMVs), which initiate NET formation via a non-canonical cytosolic LPS/caspase-4/11/Gasdermin D pathway. This modus of NET formation is independent of neutrophil elastase (NE), myeloperoxidase (MPO), peptidylarginine deiminase 4 (PAD4), and toll-like receptors (TLR). In periodontitis, the hyper-responsiveness of neutrophils to BEVs and the increased NET formation appear to be a consequence of TI.


Asunto(s)
Trampas Extracelulares , Periodontitis , Humanos , Adulto , Neutrófilos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Trampas Extracelulares/metabolismo , Periodontitis/metabolismo , Biopelículas
2.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901974

RESUMEN

The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g., via mastication and teeth brushing) has been disregarded despite the accumulated knowledge of mechanical force effects on tight junctions (TJs) and subsequent pathology in other epithelial tissues. Transitory bacteraemia is observed as a rule in gingival inflammation, but is rarely observed in clinically healthy gingiva. This implies that TJs of inflamed gingiva deteriorate, e.g., via a surplus of lipopolysaccharide (LPS), bacterial proteases, toxins, Oncostatin M (OSM), and neutrophil proteases. The inflammation-deteriorated gingival TJs rupture when exposed to physiological mechanical forces. This rupture is characterised by bacteraemia during and briefly after mastication and teeth brushing, i.e., it appears to be a dynamic process of short duration, endowed with quick repair mechanisms. In this review, we consider the bacterial, immune, and mechanical factors responsible for the increased permeability and break of the epithelial barrier of inflamed gingiva and the subsequent translocation of both viable bacteria and bacterial LPS during physiological mechanical forces, such as mastication and teeth brushing.


Asunto(s)
Bacteriemia , Periodontitis , Humanos , Encía , Lipopolisacáridos/farmacología , Periodontitis/patología , Inflamación/patología , Bacteriemia/patología
3.
Cell Death Differ ; 30(4): 861-875, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36755071

RESUMEN

Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.


Asunto(s)
Enfermedades Autoinmunes , Trampas Extracelulares , Humanos , Cromatina/metabolismo , Neutrófilos , Trampas Extracelulares/metabolismo , ADN/metabolismo , Enfermedades Autoinmunes/metabolismo , Enfermedad Crónica
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835515

RESUMEN

During inflammatory responses, neutrophils enter the sites of attack where they execute various defense mechanisms. They (I) phagocytose microorganisms, (II) degranulate to release cytokines, (III) recruit various immune cells by cell-type specific chemokines, (IV) secrete anti-microbials including lactoferrin, lysozyme, defensins and reactive oxygen species, and (V) release DNA as neutrophil extracellular traps (NETs). The latter originates from mitochondria as well as from decondensed nuclei. This is easily detected in cultured cells by staining of DNA with specific dyes. However, in tissues sections the very high fluorescence signals emitted from the condensed nuclear DNA hamper the detection of the widespread, extranuclear DNA of the NETs. In contrast, when we employ anti-DNA-IgM antibodies, they are unable to penetrate deep into the tightly packed DNA of the nucleus, and we observe a robust signal for the extended DNA patches of the NETs. To validate anti-DNA-IgM, we additionally stained the sections for the NET-markers histone H2B, myeloperoxidase, citrullinated histone H3, and neutrophil elastase. Altogether, we have described a fast one-step procedure for the detection of NETs in tissue sections, which provides new perspectives to characterize neutrophil-associated immune reactions in disease.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Fagocitosis , Histonas , ADN , Inmunoglobulina M
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499449

RESUMEN

Vascular occlusions in patients with coronavirus diseases 2019 (COVID-19) have been frequently reported in severe outcomes mainly due to a dysregulation of neutrophils mediating neutrophil extracellular trap (NET) formation. Lung specimens from patients with COVID-19 have previously shown a dynamic morphology, categorized into three types of pleomorphic occurrence based on histological findings in this study. These vascular occlusions in lung specimens were also detected using native endogenous fluorescence or NEF in a label-free method. The three types of vascular occlusions exhibit morphology of DNA rich neutrophil elastase (NE) poor (type I), NE rich DNA poor (type II), and DNA and NE rich (type III) cohort of eleven patients with six males and five females. Age and gender have been presented in this study as influencing variables linking the occurrence of several occlusions with pleomorphic contents within a patient specimen and amongst them. This study reports the categorization of pleomorphic occlusions in patients with COVID-19 and the detection of these occlusions in a label-free method utilizing NEF.


Asunto(s)
COVID-19 , Trampas Extracelulares , Enfermedades Vasculares , Masculino , Femenino , Humanos , COVID-19/complicaciones , COVID-19/patología , SARS-CoV-2 , Pulmón/patología , Neutrófilos/patología , Enfermedades Vasculares/patología
6.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993744

RESUMEN

Ocular surface diseases include a range of disorders that disturb the functions and structures of the cornea, conjunctiva, and the associated ocular surface gland network. Meibomian glands (MG) secrete lipids that create a covering layer that prevents the evaporation of the aqueous part of the tear film. Neutrophils and extracellular DNA traps populate MG and the ocular surface in a mouse model of allergic eye disease. Aggregated neutrophil extracellular traps (aggNETs) formulate a mesh-like matrix composed of extracellular chromatin that occludes MG outlets and conditions MG dysfunction. Here, a method for inducing ocular surface inflammation and MG dysfunction is presented. The procedures for collecting organs related to the ocular surface, such as the cornea, conjunctiva, and eyelids, are described in detail. Using established techniques for processing each organ, the major morphological and histopathological features of MG dysfunction are also shown. Ocular exudates offer the opportunity to assess the inflammatory state of the ocular surface. These procedures enable the investigation of topical and systemic anti-inflammatory interventions at the preclinical level.


Asunto(s)
Síndromes de Ojo Seco , Disfunción de la Glándula de Meibomio , Animales , Conjuntiva/patología , Síndromes de Ojo Seco/patología , Inflamación/patología , Glándulas Tarsales/patología , Ratones , Lágrimas/química
7.
Front Immunol ; 13: 726153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222361

RESUMEN

Phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation build the armory of neutrophils for the first line of defense against invading pathogens. All these processes are modulated by the microenvironment including tonicity, pH and oxygen levels. Here we investigated the neutrophil infiltration in cardiac tissue autopsy samples of patients with acute myocardial infarction (AMI) and compared these with tissues from patients with sepsis, endocarditis, dermal inflammation, abscesses and diseases with prominent neutrophil infiltration. We observed many neutrophils infiltrating the heart muscle after myocardial infarction. Most of these had viable morphology and only few showed signs of nuclear de-condensation, a hallmark of early NET formation. The abundance of NETs was the lowest in acute myocardial infarction when compared to other examined diseases. Since cardiac oxygen supply is abruptly abrogated in acute myocardial infarction, we hypothesized that the resulting tissue hypoxia increased the longevity of the neutrophils. Indeed, the viable cells showed increased nuclear hypoxia inducible factor-1α (HIF-1α) content, and only neutrophils with low HIF-1α started the process of NET formation (chromatin de-condensation and nuclear swelling). Prolonged neutrophil survival, increased oxidative burst and reduced NETs formation were reproduced under low oxygen tensions and by HIF-1α stabilization in vitro. We conclude that nuclear HIF-1α is associated with prolonged neutrophil survival and enhanced oxidative stress in hypoxic areas of AMI.


Asunto(s)
Trampas Extracelulares , Infarto del Miocardio , Trampas Extracelulares/fisiología , Humanos , Hipoxia/complicaciones , Infarto del Miocardio/complicaciones , Neutrófilos/fisiología , Oxígeno
8.
Cell Death Differ ; 28(11): 3125-3139, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34031543

RESUMEN

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.


Asunto(s)
COVID-19/patología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , COVID-19/complicaciones , COVID-19/inmunología , Citrulinación , Activación de Complemento , Humanos , Neutrófilos/metabolismo , Activación Plaquetaria , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Trombosis/etiología
9.
Ocul Surf ; 20: 1-12, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33401018

RESUMEN

PURPOSE: Obstructive Meibomian gland dysfunction (MGD) is one of the leading causes of evaporative dry eye disease. Meibomian glands at the eyelid secrete lipids that prevent evaporation of the aqueous tear film. The pathogenesis of obstructive MGD is incompletely understood to date. Herein, we aim to investigate the pathogenesis of obstructive MGD using murine and human samples with various forms of ocular surface inflammation. METHOD: The presence of Neutrophil extracellular Traps (NETs) was detected with immunofluorescence analysis of ocular surface discharge and biopsy samples from patients with blepharitis. Tear fluid from patients with MGD and blepharitis were evaluated for the presence of inflammatory mediators using bead based immunoassay. Murine model of allergic eye disease (AED) was performed to investigate the role of NETs in MG occlusion. RESULTS: we show that the ocular discharge from patients with blepharitis contains aggregated neutrophil extracellular traps (aggNETs). Furthermore, the ducts of human Meibomian glands affected by blepharitis were largely congested by aggNETs. Tear fluid from patients with MGD showed elevated neutrophil chemoattractants (C5a, IL6, IL8 and IL18). C5a and IL8 correlated with the degree of deficiency of tear fluid. In the murine model of allergic eye disease (AED), aggNETs accumulated in the MG leading to occlusion of their ducts and the retrograde pent-up of the fluid followed by acinar atrophy. Constraining aggNET formation by genetic or pharmacological inhibition of peptidyl arginine deiminase type 4 (PADI4) effectively reduced MG damage. CONCLUSION: We conclude that aggNETs occlude MG causing MGD after ocular surface inflammation.


Asunto(s)
Síndromes de Ojo Seco , Trampas Extracelulares , Enfermedades de los Párpados , Animales , Humanos , Inflamación , Glándulas Tarsales , Ratones , Lágrimas
10.
Cells ; 9(9)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971767

RESUMEN

Salivary gland stones, or sialoliths, are the most common cause of the obstruction of salivary glands. The mechanism behind the formation of sialoliths has been elusive. Symptomatic sialolithiasis has a prevalence of 0.45% in the general population, is characterized by recurrent painful periprandial swelling of the affected gland, and often results in sialadenitis with the need for surgical intervention. Here, we show by the use of immunohistochemistry, immunofluorescence, computed tomography (CT) scans and reconstructions, special dye techniques, bacterial genotyping, and enzyme activity analyses that neutrophil extracellular traps (NETs) initiate the formation and growth of sialoliths in humans. The deposition of neutrophil granulocyte extracellular DNA around small crystals results in the dense aggregation of the latter, and the subsequent mineralization creates alternating layers of dense mineral, which are predominantly calcium salt deposits and DNA. The further agglomeration and appositional growth of these structures promotes the development of macroscopic sialoliths that finally occlude the efferent ducts of the salivary glands, causing clinical symptoms and salivary gland dysfunction. These findings provide an entirely novel insight into the mechanism of sialolithogenesis, in which an immune system-mediated response essentially participates in the physicochemical process of concrement formation and growth.


Asunto(s)
Calcio/metabolismo , Trampas Extracelulares/inmunología , Neutrófilos/patología , Cálculos de las Glándulas Salivales/patología , Glándulas Salivales/patología , Sialadenitis/patología , Adulto , Biomarcadores/metabolismo , Calcio/química , Estudios de Cohortes , ADN/genética , ADN/metabolismo , Femenino , Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Elastasa de Leucocito/genética , Elastasa de Leucocito/inmunología , Litotricia , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Cálculos de las Glándulas Salivales/diagnóstico por imagen , Cálculos de las Glándulas Salivales/inmunología , Cálculos de las Glándulas Salivales/cirugía , Glándulas Salivales/diagnóstico por imagen , Glándulas Salivales/inmunología , Glándulas Salivales/cirugía , Sialadenitis/diagnóstico por imagen , Sialadenitis/inmunología , Sialadenitis/cirugía , Ultrasonografía , Microtomografía por Rayos X
11.
EBioMedicine ; 58: 102925, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32745993

RESUMEN

BACKGROUND: Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. METHODS: Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. PATIENT FINDINGS: Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. INTERPRETATION: These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. FUNDING: Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.


Asunto(s)
Infecciones por Coronavirus/patología , Trampas Extracelulares/metabolismo , Microvasos/patología , Neutrófilos/metabolismo , Neumonía Viral/patología , Trombosis/metabolismo , COVID-19 , Células Cultivadas , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Microvasos/metabolismo , Neutrófilos/patología , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/metabolismo , Trombosis/etiología , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...