Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 23(2): 281-289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177377

RESUMEN

Some animals form transient, responsive and solid-like ensembles through dynamic structural interactions. These ensembles demonstrate emergent responses such as spontaneous self-assembly, which are difficult to achieve in synthetic soft matter. Here we use shape-morphing units comprising responsive polymers to create solids that self-assemble, modulate their volume and disassemble on demand. The ensemble is composed of a responsive hydrogel, liquid crystal elastomer or semicrystalline polymer ribbons that reversibly bend or twist. The dispersions of these ribbons mechanically interlock, inducing reversible aggregation. The aggregated liquid crystal elastomer ribbons have a 12-fold increase in the yield stress compared with cooled dispersion and contract by 34% on heating. Ribbon type, concentration and shape dictate the aggregation and govern the global mechanical properties of the solid that forms. Coating liquid crystal elastomer ribbons with a liquid metal begets photoresponsive and electrically conductive aggregates, whereas seeding cells on hydrogel ribbons enables self-assembling three-dimensional scaffolds, providing a versatile platform for the design of dynamic materials.

2.
J Biomed Mater Res A ; 111(10): 1577-1587, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37199446

RESUMEN

Granular hydrogels are a promising biomaterial for a wide range of biomedical applications, including tissue regeneration, drug/cell delivery, and 3D printing. These granular hydrogels are created by assembling microgels through the jamming process. However, current methods for interconnecting the microgels often limit their use due to the reliance on postprocessing for crosslinking through photoinitiated reactions or enzymatic catalysis. To address this limitation, we incorporated a thiol-functionalized thermo-responsive polymer into oxidized hyaluronic acid microgel assemblies. The rapid exchange rate of thiol-aldehyde dynamic covalent bonds allows the microgel assembly to be shear-thinning and self-healing, with the phase transition behavior of the thermo-responsive polymer serving as secondary crosslinking to stabilize the granular hydrogels network at body temperature. This two-stage crosslinking system provides excellent injectability and shape stability, while maintaining mechanical integrity. In addition, the aldehyde groups of the microgels act as covalent binding sites for sustained drug release. These granular hydrogels can be used as scaffolds for cell delivery and encapsulation, and can be 3D printed without the need for post-printing processing to maintain mechanical stability. Overall, our work introduces thermo-responsive granular hydrogels with promising potential for various biomedical applications.


Asunto(s)
Hidrogeles , Microgeles , Hidrogeles/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Polímeros , Impresión Tridimensional
3.
J Mater Chem B ; 10(32): 6118-6132, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35916077

RESUMEN

Glucose biosensors that could be subcutaneously injected and interrogated without a physically connected electrode and transmitter affixed to skin would represent a major advancement in reducing the user burden of continuous glucose monitors (CGMs). Towards this goal, an optical glucose biosensor was formed by strategically tailoring a thermoresponsive double network (DN) membrane to house a phosphorescence lifetime-based glucose sensing assay. This membrane was selected based on its potential to exhibit reduced biofouling via 'self-cleaning' due to cyclical deswelling/reswelling in vivo. The membrane was strategically tailored to incorporate oxygen-sensitive metalloporphyrin phosphor, Pd meso-tetra(sulfophenyl)-tetrabenzoporphyrin ([PdPh4(SO3Na)4TBP]3) (HULK) and glucose oxidase (GOx). Specifically, electrostatic interactions and colvalent bonds were used to stabilize HULK and GOx within the membrane, respectively. Enhancing the oxygen permeability of the membrane was necessary to achieve sensitivity of HULK/GOx to physiological glucose levels. Thus, silicone microparticles were incorporated at two concentrations. Key properties of SiHy-0.25 and SiHy-0.5 microparticle-containing compositions were compared to a control having no microparticles (SiHy-0). The discrete nature of the silicone microparticles maintained the desired thermosensitivity profile and did not impact water content. While the modulus decreased with silicone microparticle content, membranes were more mechanically robust versus a conventional hydrogel. SiHy-0.25, owing to apparent phase separation, displayed greater glucose diffusion and oxygen permeability versus SiHy-0.5. Furthermore, SiHy-0.25 biosensors exhibited the greatest glucose sensitivity range of 100 to 300 mg dL-1versus only 100 to 150 mg dL-1 for both SiHy-0 and SiHy-0.5 biosensors.


Asunto(s)
Técnicas Biosensibles , Glucosa , Glucosa Oxidasa/química , Oxígeno , Siliconas
4.
Adv Drug Deliv Rev ; 187: 114361, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35636569

RESUMEN

Two-dimensional (2D) molybdenum disulfide (MoS2) is an ultrathin nanomaterial with a high degree of anisotropy, surface-to-volume ratio, chemical functionality and mechanical strength. These properties together enable MoS2 to emerge as a potent nanomaterial for diverse biomedical applications including drug delivery, regenerative medicine, biosensing and bioelectronics. Thus, understanding the interactions of MoS2 with its biological interface becomes indispensable. These interactions, referred to as "nano-bio" interactions, play a key role in determining the biocompatibility and the pathways through which the nanomaterial influences molecular, cellular and biological function. Herein, we provide a critical overview of the nano-bio interactions of MoS2 and emphasize on how these interactions dictate its biomedical applications including intracellular trafficking, biodistribution and biodegradation. Also, a critical evaluation of the interactions of MoS2 with proteins and specific cell types such as immune cells and progenitor/stem cells is illustrated which governs the short-term and long-term compatibility of MoS2-based biomedical devices.


Asunto(s)
Molibdeno , Nanoestructuras , Disulfuros/química , Humanos , Molibdeno/química , Nanoestructuras/química , Distribución Tisular
5.
Adv Healthc Mater ; 11(10): e2101737, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104392

RESUMEN

2D covalent organic frameworks (COFs) are an emerging class of crystalline porous organic polymers with a wide-range of potential applications. However, poor processability, aqueous instability, and low water dispersibility greatly limit their practical biomedical implementation. Herein, a new class of hydrolytically stable 2D COFs for sustained delivery of drugs to direct stem cell fate is reported. Specifically, a boronate-based COF (COF-5) is stabilized using amphiphilic polymer Pluronic F127 (PLU) to produce COF-PLU nanoparticles with thickness of ≈25 nm and diameter ≈200 nm. These nanoparticles are internalized via clathrin-mediated endocytosis and have high cytocompatibility (half-inhibitory concentration ≈1 mg mL-1 ). Interestingly, the 2D COFs induce osteogenic differentiation in human mesenchymal stem cells, which is unique. In addition, an osteogenic agent-dexamethasone-is able to be loaded within the porous structure of COFs for sustained delivery which further enhances the osteoinductive ability. These results demonstrate for the first time the fabrication of hydrolytically stable 2D COFs for sustained delivery of dexamethasone and demonstrate its osteoinductive characteristics.


Asunto(s)
Estructuras Metalorgánicas , Dexametasona , Humanos , Estructuras Metalorgánicas/química , Osteogénesis , Polímeros , Células Madre
6.
Adv Mater ; 33(23): e2101238, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33938048

RESUMEN

Light-responsive biomaterials are an emerging class of materials used for developing noninvasive, noncontact, precise, and controllable biomedical devices. Long-wavelength near-infrared (NIR) radiation is an attractive light source for in situ gelation due to its higher penetration depth and minimum side effects. The conventional approach to obtain crosslinked biomaterials relies heavily on the use of a photoinitiator by generating reactive species when exposed to short-wavelength radiation, which is detrimental to surrounding cells and tissue. Here, a new class of NIR-triggered in situ gelation system based on defect-rich 2D molybdenum disulfide (MoS2 ) nanoassemblies and thiol-functionalized thermoresponsive polymer in the absence of a photoinitiator is introduced. Exposure to NIR radiation activates the dynamic polymer-nanomaterials interactions by leveraging the photothermal characteristics of MoS2 and intrinsic phase transition ability of the thermoresponsive polymer. Specifically, upon NIR exposure, MoS2 acts as a crosslink epicenter by connecting with multiple polymeric chains via defect-driven click chemistry. As a proof-of-concept, the utility of NIR-triggered in situ gelation is demonstrated in vitro and in vivo. Additionally, the crosslinked gel exhibits the potential for NIR light-responsive release of encapsulated therapeutics. These light-responsive biomaterials have strong potential for a range of biomedical applications, including artificial muscle, smart actuators, 3D/4D printing, regenerative medicine, and therapeutic delivery.


Asunto(s)
Disulfuros , Molibdeno , Hidrogeles , Fototerapia
7.
J Law Med ; 28(2): 567-585, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33768759

RESUMEN

As a means of abating the crises of society, the idea of equality has long been a progressive, universal, moral and legal principle to seek justice. However, equality is open to a broad spectrum of meanings and practical applications, mainly due to its endorsement of different interpretations and concepts that give rise to complementary and competing interests. Likewise, the "capability approach", which is proposed as an alternative to the "ideal of equality", is not only contentious but also insufficient to build the theoretical basis of an ethical health care paradigm. This article aims to expand the discussion on the ambiguity around the concept of equality, particularly how it interacts with the diversities in human capabilities in a given context.


Asunto(s)
Principios Morales , Justicia Social , Atención a la Salud , Humanos
8.
ACS Appl Bio Mater ; 4(2): 1294-1306, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014481

RESUMEN

Combination therapies involving small-interfering RNA (siRNA)-mediated gene silencing and small-molecule drugs are of high interest for cancer treatment. Among the current gene delivery carriers, cell-derived extracellular vesicles (EVs) are particularly promising candidates due to their high biocompatibility, low immunogenicity, in vivo stability, and inherent targeting ability. Here, we developed a multifunctional EV platform capable of selective codelivery of siRNA and doxorubicin (DOX) to cancer cells. siRNA was first loaded into engineered lipid-hybridized EVs (eEVs) to serve as a core. Subsequently, DOX was incorporated into a polyelectrolyte shell surrounding eEVs, which was deposited by layer-by-layer (LbL) assembly. This approach resulted in the production of a stable EV-polymer complex (LbL-eEV) with a diameter of 140.2 ± 9.0 nm and zeta potential of +22.1 ± 0.5 mV. Experiments were performed to assess cellular uptake, cytotoxicity, and gene silencing efficacy in lung adenocarcinoma cells (A549), with noncancerous fibroblast cells (CCL-210) used as a control. The results demonstrated that the LbL-eEV complex can traffic through cells and release siRNA in the cytoplasm, while delivered DOX enters nuclei to induce programmed cell death. Moreover, the inherent selectivity of the particles for cancer cells resulted in effective gene silencing and cancer killing efficiency with reduced cytotoxicity to normal cells. Synchronous delivery of siRNA and DOX was also verified by flow cytometry analysis of single cells. In summary, these data provide a proof of concept for engineering EVs to deliver multiple therapeutics and suggest that LbL-eEVs are a promising drug delivery platform for targeting cancer.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Neoplasias Pulmonares/terapia , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Células A549 , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares , Humanos , Nanopartículas , Polímeros , Interferencia de ARN
9.
Proc Natl Acad Sci U S A ; 117(24): 13329-13338, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32461372

RESUMEN

Two-dimensional (2D) molybdenum disulfide (MoS2) nanomaterials are an emerging class of biomaterials that are photoresponsive at near-infrared wavelengths (NIR). Here, we demonstrate the ability of 2D MoS2 to modulate cellular functions of human stem cells through photothermal mechanisms. The interaction of MoS2 and NIR stimulation of MoS2 with human stem cells is investigated using whole-transcriptome sequencing (RNA-seq). Global gene expression profile of stem cells reveals significant influence of MoS2 and NIR stimulation of MoS2 on integrins, cellular migration, and wound healing. The combination of MoS2 and NIR light may provide new approaches to regulate and direct these cellular functions for the purposes of regenerative medicine as well as cancer therapy.


Asunto(s)
Disulfuros/efectos de la radiación , Células Madre Mesenquimatosas/efectos de la radiación , Molibdeno/efectos de la radiación , Nanoestructuras/efectos de la radiación , Adhesión Celular/efectos de la radiación , Movimiento Celular/efectos de la radiación , Supervivencia Celular , Disulfuros/química , Disulfuros/metabolismo , Perfilación de la Expresión Génica , Humanos , Rayos Infrarrojos , Integrinas/genética , Integrinas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Molibdeno/química , Molibdeno/metabolismo , Nanoestructuras/química , Fármacos Fotosensibilizantes , Transducción de Señal/efectos de la radiación
10.
Tissue Eng Part A ; 26(5-6): 318-338, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32079490

RESUMEN

3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues. This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control over bioink deposition permits for improved communication between cells and the extracellular matrix, facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically, the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria, specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed. Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted. Graphical abstract [Figure: see text] Impact statement Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre- and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development and functional bioprinting are highlighted.


Asunto(s)
Bioimpresión/métodos , Impresión Tridimensional , Andamios del Tejido/química , Matriz Extracelular , Ingeniería de Tejidos/métodos
11.
Chem Commun (Camb) ; 55(60): 8772-8775, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31172998

RESUMEN

We introduced a new concept to the control of wetting characteristics by modulating the degree of atomic defects of two-dimensional transition metal dichalcogenide nanoassemblies of molybdenum disulfide. This work shed new light on the role of atomic vacancies on wetting characteristic that can be leveraged to develop a new class of superhydrophobic surfaces for various applications without altering their topography.


Asunto(s)
Adhesión Celular , Disulfuros/química , Células Madre Mesenquimatosas/fisiología , Molibdeno/química , Nanoestructuras/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Humectabilidad
12.
Lab Chip ; 19(15): 2500-2511, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31246211

RESUMEN

Development of therapeutic approaches to treat vascular dysfunction and thrombosis at disease- and patient-specific levels is an exciting proposed direction in biomedical research. However, this cannot be achieved with animal preclinical models alone, and new in vitro techniques, like human organ-on-chips, currently lack inclusion of easily obtainable and phenotypically-similar human cell sources. Therefore, there is an unmet need to identify sources of patient primary cells and apply them in organ-on-chips to increase personalized mechanistic understanding of diseases and to assess drugs. In this study, we provide a proof-of-feasibility of utilizing blood outgrowth endothelial cells (BOECs) as a disease-specific primary cell source to analyze vascular inflammation and thrombosis in vascular organ-chips or "vessel-chips". These blood-derived BOECs express several factors that confirm their endothelial identity. The vessel-chips are cultured with BOECs from healthy or diabetic patients and form an intact 3D endothelial lumen. Inflammation of the BOEC endothelium with exogenous cytokines reveals vascular dysfunction and thrombosis in vitro similar to in vivo observations. Interestingly, our study with vessel-chips also reveals that unstimulated BOECs of type 1 diabetic pigs show phenotypic behavior of the disease - high vascular dysfunction and thrombogenicity - when compared to control BOECs or normal primary endothelial cells. These results demonstrate the potential of organ-on-chips made from autologous endothelial cells obtained from blood in modeling vascular pathologies and therapeutic outcomes at a disease and patient-specific level.


Asunto(s)
Células Sanguíneas/patología , Células Progenitoras Endoteliales/patología , Dispositivos Laboratorio en un Chip , Trombosis/patología , Adulto , Proliferación Celular , Estudios de Factibilidad , Humanos , Estrés Oxidativo , Trombosis/sangre
13.
Adv Healthc Mater ; 8(11): e1801553, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31066517

RESUMEN

A nanoengineered bioink loaded with therapeutic proteins is designed to direct cell function in a 3D printed construct. The bioink is developed from a hydrolytically degradable polymer and 2D synthetic nanoparticle. The synthesis of poly(ethylene glycol)-dithiothreitol (PEGDTT) via a Michael-like step growth polymerization results in acrylate terminated degradable macromer. The addition of 2D nanosilicates to PEGDTT results in formation of shear-thinning bioinks with high printability and structural fidelity. The mechanical properties, swelling kinetics, and degradation rate of 3D printed constructs can be modulated by changing the ratio of PEG:PEGDTT and nanosilicates concentration. Due to high surface area and charged characteristic of nanosilicates, protein therapeutics can be sequestered in 3D printing structure for prolong duration. Sustained release of pro-angiogenic therapeutics from 3D printed structure, promoted rapid migration of human endothelial umbilical vein cell. This approach to design biologically active inks to control and direct cell behavior can be used to engineer 3D complex tissue structure for regenerative medicine.


Asunto(s)
Bioimpresión , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Impresión Tridimensional , Proteínas/química , Andamios del Tejido/química , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Tinta
14.
Adv Mater ; 31(23): e1900332, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30941811

RESUMEN

Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well-defined composition. Synthetic nanoclays are plate-like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface-to-volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state-of-the-art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay-based biomaterials are identified.


Asunto(s)
Materiales Biocompatibles/química , Arcilla/química , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/química , Medicina Regenerativa/métodos , Animales , Humanos , Polímeros/química , Impresión Tridimensional , Proteínas/química , Silicatos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
15.
ACS Appl Mater Interfaces ; 11(7): 6741-6750, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30676016

RESUMEN

We present a nanoengineered system for sustained and prolonged delivery of protein therapeutics, which has the potential to impact current orthopedic regeneration strategies. Specifically, we introduce two-dimensional nanosilicates with a high surface area and charged characteristics for delivery of active proteins for more than 30 days. The nanosilicates show high binding efficacy without altering the protein conformation and bioactivity. The released proteins are able to maintain high activity as demonstrated by enhanced differentiation of human mesenchymal stem cells at 10-fold lower concentration compared to the exogenous control. Utilizing the nanosilicates as a delivery vehicle could minimize the negative side effects observed because of the use of supraphysiological dosages of protein therapeutics for orthopedic regeneration strategies.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/farmacocinética , Proteína Morfogenética Ósea 2/farmacología , Línea Celular , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Humanos , Células Madre Mesenquimatosas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...